Adipose tissue is a metabolic and endocrine organ that secretes bioactive molecules called adipocytokines. Among these, adiponectin has a crucial role in obesity-associated breast cancer. The key molecule of adiponectin signaling is AMPK, which is mainly activated by liver kinase B1 (LKB1). Here, we demonstrated that estrogen receptor-α (ERα)/LKB1 interaction may negatively interfere with the LKB1 capability to phosphorylate AMPK and inhibit its downstream signaling TSC2/mTOR/p70S6k. In adiponectin-treated MCF-7 cells, AMPK signaling was not working, resulting in its downstream target acetyl-CoA carboxylase (ACC) being still active. In contrast, in MDA-MB-231 cells, AMPK and ACC phosphorylation was enhanced by adiponectin, inhibiting lipogenesis and cell growth. Upon adiponectin, ERα signaling switched the energy balance of breast cancer cells toward a lipogenic phenotype. Therefore, adiponectin played an inhibitory role on ERα-negative cell growth and progression in vitro and in vivo. In contrast, low adiponectin levels, similar to those circulating in obese patients, acted on ERα-positive cells as a growth factor, stimulating proliferation. The latter effect was blunted in vivo by high adiponectin concentration. All this may have translational relevance, addressing how the handling of adiponectin, as a therapeutic tool in breast cancer treatment, needs to be carefully considered in ERα-positive obese patients, where circulating levels of this adipocytokine are relatively low. In other words, in ERα-positive breast cancer obese patients, higher adiponectin doses should be administered with respect to ERα-negative breast cancer, also opportunely combined with antiestrogen therapy.
Uncoupling effects of estrogen receptor α on LKB1/AMPK interaction upon adiponectin exposure in breast cancer
Mauro L
;Naimo GD;Gelsomino L;Malivindi R;Bruno L;Pellegrino M;Panno ML;Andò S
2018-01-01
Abstract
Adipose tissue is a metabolic and endocrine organ that secretes bioactive molecules called adipocytokines. Among these, adiponectin has a crucial role in obesity-associated breast cancer. The key molecule of adiponectin signaling is AMPK, which is mainly activated by liver kinase B1 (LKB1). Here, we demonstrated that estrogen receptor-α (ERα)/LKB1 interaction may negatively interfere with the LKB1 capability to phosphorylate AMPK and inhibit its downstream signaling TSC2/mTOR/p70S6k. In adiponectin-treated MCF-7 cells, AMPK signaling was not working, resulting in its downstream target acetyl-CoA carboxylase (ACC) being still active. In contrast, in MDA-MB-231 cells, AMPK and ACC phosphorylation was enhanced by adiponectin, inhibiting lipogenesis and cell growth. Upon adiponectin, ERα signaling switched the energy balance of breast cancer cells toward a lipogenic phenotype. Therefore, adiponectin played an inhibitory role on ERα-negative cell growth and progression in vitro and in vivo. In contrast, low adiponectin levels, similar to those circulating in obese patients, acted on ERα-positive cells as a growth factor, stimulating proliferation. The latter effect was blunted in vivo by high adiponectin concentration. All this may have translational relevance, addressing how the handling of adiponectin, as a therapeutic tool in breast cancer treatment, needs to be carefully considered in ERα-positive obese patients, where circulating levels of this adipocytokine are relatively low. In other words, in ERα-positive breast cancer obese patients, higher adiponectin doses should be administered with respect to ERα-negative breast cancer, also opportunely combined with antiestrogen therapy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.