Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (−120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.

Orexin receptor expression is increased during mancozeb-induced feeding impairments and neurodegenerative events in a marine fish

Zizza, Merylin;Furia, Emilia;Sindona, Giovanni;Canonaco, Marcello;Facciolo, Rosa Maria
2018-01-01

Abstract

Food intake ensures energy resources sufficient for basic metabolism, immune system and reproductive investment. It is already known that food-seeking performances, which are crucially controlled by orexins (ORXs), may be under the influence of environmental factors including pollutants. Among these, mancozeb (mz) is becoming an environmental risk for neurodegenerative diseases. Due to few studies on marine fish exposed to mz, it was our intention to correlate feeding latency, food intake and feeding duration to potential neurodegenerative processes in key diencephalic sites and expression changes of the ORX neuroreceptor (ORXR) in the ornate wrasses (Thalassoma pavo). Hence, fish exposed for 4 days (d) to mz 0.2 mg/l (deriving from a 0.07, 0.14, 0.2, 0.3 mg/l screening test) displayed a significant reduction (p < 0.05) of food intake compared to controls as early as 1d that became more evident (p < 0.01) after 3d. Moreover, significant enhancements of feeding latency were reported after 1d up to 3d (p < 0.001) and even feeding duration was enhanced up to 3d (p < 0.001), which instead moderately increased after 4d (p < 0.05). A reduction (−120%; p < 0.001) of mean body weight was also detected at the end of exposure. Likewise, a notable (p < 0.001) activation of ORXR protein occurred together with mRNA up-regulations in diencephalic areas such as the diffuse nucleus of the inferior lobe (+48%) that also exhibited evident degenerative neuronal fields. Overall, these results highlight an ORX role as a vital component of the neuroprotective program under environmental conditions that interfere with feeding behaviors.
2018
Diencephalic degeneration; Feeding latency; Food intake; Manganese/zinc-ethylene-bis-dithiocarbamate; Orexin receptor; Neuroscience (all); Toxicology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/280222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact