A neural approach to modeling measurement devices is presented. This approach allows the usual components of a measurement apparatus (transducers, filters, amplifiers, analog-to-digital converters, etc.) to be easily modeled by means of suitably trained Artificial Neural Networks. Two applications regarding analog and mixed analog/digital devices are reported, highlighting the peculiarity of this approach and the accuracy obtainable.

Accurate neural model identification of measurement devices

Daponte, Pasquale;Grimaldi, Domenico
1996

Abstract

A neural approach to modeling measurement devices is presented. This approach allows the usual components of a measurement apparatus (transducers, filters, amplifiers, analog-to-digital converters, etc.) to be easily modeled by means of suitably trained Artificial Neural Networks. Two applications regarding analog and mixed analog/digital devices are reported, highlighting the peculiarity of this approach and the accuracy obtainable.
Instrumentation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/285354
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact