Landscapes and soils evolve in non‐linear ways over millennia. Current knowledge is incomplete as only average denudation (or erosion) rates are normally estimated, neglecting the temporal discontinuities of these processes. The determination of regressive and progressive phases of soil evolution is important to our understanding of how soils and landscapes respond to environmental changes. The Sila Massif (Italy) provides a well‐defined geomorphological and geological setting to unravel temporal variations in soil redistribution rates. We used a combination of in situ cosmogenic radionuclide measurements (10Be) along tor (residual rock) height profiles, coupled with fallout radionuclides (239+240Pu) in soils, to model soil denudation rates over the last 100 ka. We measured rates prior to the Last Glacial Maximum (LGM) of ≤30 t km−2 yr−1 (~0.036 mm yr−1). Following the LGM, during the transition from the Pleistocene to the Holocene, these rates increased to ~150–200 t km−2 yr−1 and appeared to be above soil production rates, causing regressive soil evolution. For the last ~50 years, we even describe erosion rates of ≥1,000 t km−2 yr−1 (~1.23 mm yr−1) and consider human impact as the decisive factor for this development. Consequently, the natural soil production rates cannot cope with the current erosion rates. Thus, a distinct regressive phase of soil formation exists, which will give rise to shallowing of soils over time. Overall, our multimethod approach traced denudation and erosion histories over geologic and human timescales and made a new archive to soil science and geomorphology accessible.

Denudation variability of the Sila Massif upland (Italy) from decades to millennia using 10Be and 239+240Pu

Fabio Scarciglia;
2018-01-01

Abstract

Landscapes and soils evolve in non‐linear ways over millennia. Current knowledge is incomplete as only average denudation (or erosion) rates are normally estimated, neglecting the temporal discontinuities of these processes. The determination of regressive and progressive phases of soil evolution is important to our understanding of how soils and landscapes respond to environmental changes. The Sila Massif (Italy) provides a well‐defined geomorphological and geological setting to unravel temporal variations in soil redistribution rates. We used a combination of in situ cosmogenic radionuclide measurements (10Be) along tor (residual rock) height profiles, coupled with fallout radionuclides (239+240Pu) in soils, to model soil denudation rates over the last 100 ka. We measured rates prior to the Last Glacial Maximum (LGM) of ≤30 t km−2 yr−1 (~0.036 mm yr−1). Following the LGM, during the transition from the Pleistocene to the Holocene, these rates increased to ~150–200 t km−2 yr−1 and appeared to be above soil production rates, causing regressive soil evolution. For the last ~50 years, we even describe erosion rates of ≥1,000 t km−2 yr−1 (~1.23 mm yr−1) and consider human impact as the decisive factor for this development. Consequently, the natural soil production rates cannot cope with the current erosion rates. Thus, a distinct regressive phase of soil formation exists, which will give rise to shallowing of soils over time. Overall, our multimethod approach traced denudation and erosion histories over geologic and human timescales and made a new archive to soil science and geomorphology accessible.
File in questo prodotto:
File Dimensione Formato  
Raab et al_LDD-2018_accepted.pdf

Open Access dal 07/08/2019

Descrizione: This is the peer reviewed version of the following article: Raab, G., Scarciglia, F., Norton, K., Dahms, D., Brandová, D., de Castro Portes, R., Christl, M., Ketterer, M.E., Ruppli, A., Egli, M., 2018. Denudation variability of the Sila Massif upland (Italy) from decades to millennia using 10Be and 239+240Pu. Land Degradation & Development 29, 3736-3752, which has been published in final form at https://dx.doi.org/10.1002/ldr.3120. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/286802
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact