The development of efficient synthetic strategies for the discovery of novel antitumor molecules is a major goal in current research. In this context, we report here a catalytic double cyclization process leading to bicyclic heterocycles with significant antitumor activity on different human breast cancer (BC) cell lines. The products, 6,6a-dihydrofuro[3,2-b]furan-2(5H)-ones, were obtained in one step, starting from simple substrates (4-yne-1,3-diols, CO, and O2), under the catalytic action of PdI2 in conjunction with KI. These compounds have significant antiproliferative activity in vitro on human BC cell lines, both hormone receptor positive (MCF-7) and triple negative (triple-negative breast cancer [TNBC]; MDA-MB-231 and MDAMB-468), while exhibiting practically no effects on normal MCF-10A (human mammary epithelial) and 3T3-L1 (murine fibroblasts) cells. Thus, these compounds have the potential to expand the therapeutic options against BC, and in particular, against its most aggressive forms (TNBCs). Moreover, the present synthetic approach may provide an economic benefit for their production.

Catalytic Double Cyclization Process for Antitumor Agents against Breast Cancer Cell Lines

mancuso, raffaella;ZICCARELLI, IDA;chimento, adele;marino, nadia;sirianni, rosa;pezzi, vincenzo;gabriele, bartolo
2018-01-01

Abstract

The development of efficient synthetic strategies for the discovery of novel antitumor molecules is a major goal in current research. In this context, we report here a catalytic double cyclization process leading to bicyclic heterocycles with significant antitumor activity on different human breast cancer (BC) cell lines. The products, 6,6a-dihydrofuro[3,2-b]furan-2(5H)-ones, were obtained in one step, starting from simple substrates (4-yne-1,3-diols, CO, and O2), under the catalytic action of PdI2 in conjunction with KI. These compounds have significant antiproliferative activity in vitro on human BC cell lines, both hormone receptor positive (MCF-7) and triple negative (triple-negative breast cancer [TNBC]; MDA-MB-231 and MDAMB-468), while exhibiting practically no effects on normal MCF-10A (human mammary epithelial) and 3T3-L1 (murine fibroblasts) cells. Thus, these compounds have the potential to expand the therapeutic options against BC, and in particular, against its most aggressive forms (TNBCs). Moreover, the present synthetic approach may provide an economic benefit for their production.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/287476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact