Biogerontological research indicates nutrition as one of the major determinants of healthy aging, due to the role of nutrients in maintaining the dynamic-homeostasis of the organism. In this frame, the importance of proteins and constitutive amino acids (AAs), and in particular of functional AAs is emerging. The ability to sense and respond to changes in AAs availability is mediated by a complex network of dynamic players, crucial for an efficient regulation of their downstream effects. Here, we reviewed the current knowledge about the involvement of AA sensing mechanisms in aging and age-related diseases, focusing our attention on mTORC1 and AA transporters. In this context it is of note that alterations in AA sensors have been reported to be directly implicated in age-related phenotypes, suggesting that their modulation can represent a possible strategy for modulating (and possibly delaying) aging decline. Furthermore, these alterations may influence the effects of AA supplementation, by influencing the individual answer to AA availability. On the whole, evidences support the hypothesis that the efficiency of components of AA sensing network may have important implications for therapy, and their knowledge may be crucial for programming AA supplementation for contrasting age-related phenotypes, opening new opportunities for therapeutic interventions aimed to promote human health span.

Amino acids and amino acid sensing: implication for aging and diseases.

Dato S
Writing – Original Draft Preparation
;
Hoxha E
Methodology
;
Crocco P
Investigation
;
Iannone F
Data Curation
;
Passarino G
Writing – Review & Editing
;
Rose G.
Writing – Original Draft Preparation
2019-01-01

Abstract

Biogerontological research indicates nutrition as one of the major determinants of healthy aging, due to the role of nutrients in maintaining the dynamic-homeostasis of the organism. In this frame, the importance of proteins and constitutive amino acids (AAs), and in particular of functional AAs is emerging. The ability to sense and respond to changes in AAs availability is mediated by a complex network of dynamic players, crucial for an efficient regulation of their downstream effects. Here, we reviewed the current knowledge about the involvement of AA sensing mechanisms in aging and age-related diseases, focusing our attention on mTORC1 and AA transporters. In this context it is of note that alterations in AA sensors have been reported to be directly implicated in age-related phenotypes, suggesting that their modulation can represent a possible strategy for modulating (and possibly delaying) aging decline. Furthermore, these alterations may influence the effects of AA supplementation, by influencing the individual answer to AA availability. On the whole, evidences support the hypothesis that the efficiency of components of AA sensing network may have important implications for therapy, and their knowledge may be crucial for programming AA supplementation for contrasting age-related phenotypes, opening new opportunities for therapeutic interventions aimed to promote human health span.
2019
Aging and age-related diseases; Amino acid availability; Amino acid sensing; Amino acid supplementation; Amino acid transporters; mTORC1 pathway
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/288095
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact