This study presents a quantification method for the assessment of the optic nerve head (ONH) deformations of the living human eye under acute intraocular pressure (IOP) elevation and change of cerebrospinal fluid pressure (CSFP) with body position. One eye from a brain-dead organ donor with open-angle glaucoma was imaged by optical coherence tomography angiography during an acute IOP and CSFP elevation test. Volumetric 3D strain was computed by digital volume correlation. With increase in IOP the shear strain consistently increased in both sitting and supine position (p < 0.001). When CSFP was increased at constant IOP by changing body position, a global reduction in the ONH strain was observed (−0.14% p = 0.0264). Strain in the vasculature was significantly higher than in the structural tissue (+0.90%, p = 0.0002). Retinal nerve fiber layer (RNFL) thickness strongly associated (ρ = −0.847, p = 0.008) with strain in the peripapillary sclera (ppScl) but not in the retina (p = 0.433) and lamina (p = 0.611). These initial results show that: CSFP independently to IOP modulates strain in the human ONH; ppScl strains are greater than strains in lamina and retina; strain in the retinal vasculature was higher than in the structural tissue; In this glaucoma eye, higher ppScl strain associated with lower RNFL thickness.

In vivo optic nerve head mechanical response to intraocular and cerebrospinal fluid pressure: imaging protocol and quantification method

Massimo A. Fazio
;
Luigi Bruno;
2018

Abstract

This study presents a quantification method for the assessment of the optic nerve head (ONH) deformations of the living human eye under acute intraocular pressure (IOP) elevation and change of cerebrospinal fluid pressure (CSFP) with body position. One eye from a brain-dead organ donor with open-angle glaucoma was imaged by optical coherence tomography angiography during an acute IOP and CSFP elevation test. Volumetric 3D strain was computed by digital volume correlation. With increase in IOP the shear strain consistently increased in both sitting and supine position (p < 0.001). When CSFP was increased at constant IOP by changing body position, a global reduction in the ONH strain was observed (−0.14% p = 0.0264). Strain in the vasculature was significantly higher than in the structural tissue (+0.90%, p = 0.0002). Retinal nerve fiber layer (RNFL) thickness strongly associated (ρ = −0.847, p = 0.008) with strain in the peripapillary sclera (ppScl) but not in the retina (p = 0.433) and lamina (p = 0.611). These initial results show that: CSFP independently to IOP modulates strain in the human ONH; ppScl strains are greater than strains in lamina and retina; strain in the retinal vasculature was higher than in the structural tissue; In this glaucoma eye, higher ppScl strain associated with lower RNFL thickness.
Optic nerve head
Intraocular pressure
Optical coherence tomography
Cerebrospinal fluid pressure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/288662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact