Scalability is a key feature for big data analysis and machine learning frameworks and for applications that need to analyze very large and real-time data available from data repositories, social media, sensor networks, smartphones, and the Web. Scalable big data analysis today can be achieved by parallel implementations that are able to exploit the computing and storage facilities of high performance computing (HPC) systems and clouds, whereas in the near future Exascale systems will be used to implement extreme-scale data analysis. Here is discussed how clouds currently support the development of scalable data mining solutions and are outlined and examined the main challenges to be addressed and solved for implementing innovative data analysis applications on Exascale systems.
A view of programming scalable data analysis: from clouds to exascale
Domenico Talia
2019-01-01
Abstract
Scalability is a key feature for big data analysis and machine learning frameworks and for applications that need to analyze very large and real-time data available from data repositories, social media, sensor networks, smartphones, and the Web. Scalable big data analysis today can be achieved by parallel implementations that are able to exploit the computing and storage facilities of high performance computing (HPC) systems and clouds, whereas in the near future Exascale systems will be used to implement extreme-scale data analysis. Here is discussed how clouds currently support the development of scalable data mining solutions and are outlined and examined the main challenges to be addressed and solved for implementing innovative data analysis applications on Exascale systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.