This paper presents the first experimental assessment of a highly integrated dual-band dual-polarized antenna tile designed for synthetic aperture radar (SAR) digital beam-forming (DBF) satellite applications. The demonstrator described in this paper is the first comprehensive experimental validation of an RF module providing the X-band and Ka-band (9.6- and 35.75-GHz) operation with custom downconversion stages. All the antennas, transitions, and downconversion chips are integrated in the same antenna tile fabricated using a customized 15-layer high density interconnect process. The designed tile goes to the limits of the proposed technology and for the high trace density and for the size of the vertical transitions. The proposed results represent the state of the art in terms of compactness for a DBF SAR RF module even though the demonstrator was manufactured with a standard low-cost technology. The experimental assessment proves the validity of the proposed manufacturing and integration approaches showing a substantial agreement between the performance of the individual blocks and of the integrated system.

An integrated radar tile for digital beamforming X-/Ka-band synthetic aperture radar instruments

Arnieri, E.;Boccia, L.;Amendola, G.;
2019

Abstract

This paper presents the first experimental assessment of a highly integrated dual-band dual-polarized antenna tile designed for synthetic aperture radar (SAR) digital beam-forming (DBF) satellite applications. The demonstrator described in this paper is the first comprehensive experimental validation of an RF module providing the X-band and Ka-band (9.6- and 35.75-GHz) operation with custom downconversion stages. All the antennas, transitions, and downconversion chips are integrated in the same antenna tile fabricated using a customized 15-layer high density interconnect process. The designed tile goes to the limits of the proposed technology and for the high trace density and for the size of the vertical transitions. The proposed results represent the state of the art in terms of compactness for a DBF SAR RF module even though the demonstrator was manufactured with a standard low-cost technology. The experimental assessment proves the validity of the proposed manufacturing and integration approaches showing a substantial agreement between the performance of the individual blocks and of the integrated system.
Antenna; Digital beamforming (DBF); Integrated systems; Radar; Small satellite; Synthetic aperture; Radiation; Condensed Matter Physics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
An integrated radar module vers 2 Preprint.pdf

accesso aperto

Descrizione: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The publisher version is available at https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8606449; DOI: 10.1109/TMTT.2018.2889038; Source: IEEE
Tipologia: Documento in Post-print
Licenza: Copyright dell'editore
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/289853
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact