We show that general triple planes with genus and irregularity zero belong to at most 12 families, that we call surfaces of type I to XII, and we prove that the corresponding Tschirnhausen bundle is a direct sum of two line bundles in cases I, II, III, whereas it is a rank 2 Steiner bundle in the remaining cases. We also provide existence results and explicit descriptions for surfaces of type I to VII, recovering all classical examples and discovering several new ones. In particular, triple planes of type VII provide counterexamples to a wrong claim made in 1942 by Bronowski. Finally, in the last part of the paper we discuss some moduli problems related to our constructions.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Triple planes with p g = q = 0 |
Autori: | |
Data di pubblicazione: | 2019 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11770/290023 |
Appare nelle tipologie: | 1.1 Articolo in rivista |