The stiffness-tailoring capability of Variable Angle Tow (VAT) laminates gives enhanced freedom to design thin-walled structures. One key advantage of tow steering is the ability to redistribute stresses improving buckling performance, leading to reduction in material weight and costs. The aim of this work is to optimise the initial postbuckling behaviour of a recently proposed VAT composite wingbox. The optimisation process is based on a fibre path parameterisation. It involves seeking the stacking sequence that minimises the displacements occurring in the postbuckling regime. This problem is solved by coupling the multi-modal Koiter asymptotic approach implemented with a solid-shell Finite Element environment through stochastic optimisation strategies. Results obtained regarding different optimisation scenarios show a much improved performance for the buckling and postbuckling response of the wingbox with respect to the initial VAT design. Additionally, manufacturing constraints are readily included in the optimisation program. The possibility of performing an efficient and robust optimisation process of a complex structure with a multi-modal Koiter asymptotic approach is demonstrated, showing its viability as a design tool for buckling dominated structures. A parametric study regarding the influence of steering radii shows that overcoming the current manufacturing constraint on minimum radius is worthy of investigation.

Postbuckling optimisation of a variable angle tow composite wingbox using a multi-modal Koiter approach

Liguori, Francesco S.
;
ZUCCO, GIOVANNI;Madeo, Antonio;Magisano, Domenico;Leonetti, Leonardo;Garcea, Giovanni;
2019-01-01

Abstract

The stiffness-tailoring capability of Variable Angle Tow (VAT) laminates gives enhanced freedom to design thin-walled structures. One key advantage of tow steering is the ability to redistribute stresses improving buckling performance, leading to reduction in material weight and costs. The aim of this work is to optimise the initial postbuckling behaviour of a recently proposed VAT composite wingbox. The optimisation process is based on a fibre path parameterisation. It involves seeking the stacking sequence that minimises the displacements occurring in the postbuckling regime. This problem is solved by coupling the multi-modal Koiter asymptotic approach implemented with a solid-shell Finite Element environment through stochastic optimisation strategies. Results obtained regarding different optimisation scenarios show a much improved performance for the buckling and postbuckling response of the wingbox with respect to the initial VAT design. Additionally, manufacturing constraints are readily included in the optimisation program. The possibility of performing an efficient and robust optimisation process of a complex structure with a multi-modal Koiter asymptotic approach is demonstrated, showing its viability as a design tool for buckling dominated structures. A parametric study regarding the influence of steering radii shows that overcoming the current manufacturing constraint on minimum radius is worthy of investigation.
2019
Finite element method; Koiter method; Postbuckling optimisation; Variable angle tow laminates; Wingbox; Civil and Structural Engineering; Building and Construction; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
Garcea_et_al.pdf

Open Access dal 29/01/2021

Descrizione: https://www.sciencedirect.com/science/article/abs/pii/S0263823118316331?via=ihub; DOI: 10.1016/j.tws.2019.01.035
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/290609
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 82
  • ???jsp.display-item.citation.isi??? 67
social impact