Most of the common drugs used to treat the cervical cancer, which main etiological factor is the HPV infection, cause side effects and intrinsic/acquired resistance to chemotherapy. In this study we investigated whether an olive leaf extract (OLE), rich in polyphenols, was able to exert anti-tumor effects in human cervical cancer cells (HeLa). MTT assay results showed a reduction of HeLa cells viability OLE-induced, concomitantly with a gene and protein down-regulation of Cyclin-D1 and an up-regulation of p21, triggering intrinsic apoptosis. OLE reduced NFkB nuclear translocation, which constitutive activation, stimulated by HPV-oncoproteins, promotes cancer progression and functional studies revealed that OLE activated p21Cip/WAF1 in a transcriptional-dependent-manner, by reducing the nuclear recruitment of NFkB on its responsive elements. Furthermore, OLE treatment counteracted epithelial-to-mesenchymal-transition and inhibited anchorage-dependent and -independent cell growth EGF-induced. Finally, MTT assay results revealed that OLE plus Cisplatin strengthened the reduction of cells viability Cisplatin-induced, as OLE inhibited NFkB, AkT and MAPK pathways, all involved in Cisplatin chemoresistance. In conclusion, we demonstrated that in HeLa cells OLE exerts pro-apoptotic effects, elucidating the molecular mechanism and that OLE could mitigate Cisplatin chemoresistance. Further studies are needed to explore the potential coadiuvant use of OLE for cervical cancer treatment.
An Olive Leaf Extract Rich in Polyphenols Promotes Apoptosis in Cervical Cancer Cells by Upregulating p21Cip/WAF1 Gene Expression
Vizza, Donatella;Puoci, Francesco;Ortensia I, Parisi;Lofaro, Danilo;Scrivano, Luca;Bonofiglio, Renzo;Perri, AnnaMembro del Collaboration Group
2019-01-01
Abstract
Most of the common drugs used to treat the cervical cancer, which main etiological factor is the HPV infection, cause side effects and intrinsic/acquired resistance to chemotherapy. In this study we investigated whether an olive leaf extract (OLE), rich in polyphenols, was able to exert anti-tumor effects in human cervical cancer cells (HeLa). MTT assay results showed a reduction of HeLa cells viability OLE-induced, concomitantly with a gene and protein down-regulation of Cyclin-D1 and an up-regulation of p21, triggering intrinsic apoptosis. OLE reduced NFkB nuclear translocation, which constitutive activation, stimulated by HPV-oncoproteins, promotes cancer progression and functional studies revealed that OLE activated p21Cip/WAF1 in a transcriptional-dependent-manner, by reducing the nuclear recruitment of NFkB on its responsive elements. Furthermore, OLE treatment counteracted epithelial-to-mesenchymal-transition and inhibited anchorage-dependent and -independent cell growth EGF-induced. Finally, MTT assay results revealed that OLE plus Cisplatin strengthened the reduction of cells viability Cisplatin-induced, as OLE inhibited NFkB, AkT and MAPK pathways, all involved in Cisplatin chemoresistance. In conclusion, we demonstrated that in HeLa cells OLE exerts pro-apoptotic effects, elucidating the molecular mechanism and that OLE could mitigate Cisplatin chemoresistance. Further studies are needed to explore the potential coadiuvant use of OLE for cervical cancer treatment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.