Silver nanoparticles (Ag-NPs) are one of the most popular nanotechnologies because of their unique antibacterial and antifungal properties. Given their increasing use in a wide range of commercial, biomedical and food products, exposure to Ag-NPs is now a reality in people's lives. However, there is a serious lack of information regarding their potential toxic effects in the central nervous system. In this study, we investigated the biocompatibility of “homemade” Ag-NPs in an in vitro model of human neurons derived from dental pulp mesenchymal stem cells. Our results showed that acute exposure to Ag-NPs cause cytotoxicity, by triggering cell apoptosis, damaging neuronal connections, affecting the mitochondrial activity and changing the mRNA expression level of MT3 and OSGIN2, two genes involved in heavy metals metabolism and cellular growth during oxidative stress conditions. Further studies are needed to understand the molecular mechanisms and the physiological consequences underlying Ag-NPs exposure.

Ag-NPs induce apoptosis, mitochondrial damages and MT3/OSGIN2 expression changes in an in vitro model of human dental-pulp-stem-cells-derived neurons

Conforti, Francesca;
2018-01-01

Abstract

Silver nanoparticles (Ag-NPs) are one of the most popular nanotechnologies because of their unique antibacterial and antifungal properties. Given their increasing use in a wide range of commercial, biomedical and food products, exposure to Ag-NPs is now a reality in people's lives. However, there is a serious lack of information regarding their potential toxic effects in the central nervous system. In this study, we investigated the biocompatibility of “homemade” Ag-NPs in an in vitro model of human neurons derived from dental pulp mesenchymal stem cells. Our results showed that acute exposure to Ag-NPs cause cytotoxicity, by triggering cell apoptosis, damaging neuronal connections, affecting the mitochondrial activity and changing the mRNA expression level of MT3 and OSGIN2, two genes involved in heavy metals metabolism and cellular growth during oxidative stress conditions. Further studies are needed to understand the molecular mechanisms and the physiological consequences underlying Ag-NPs exposure.
2018
Dental pulp stem cells; Neurons; Silver nanoparticles; Toxicity; Apoptosis; Cell Survival; Cells, Cultured; Dental Pulp; Dose-Response Relationship, Drug; Gene Expression; Humans; Mesenchymal Stem Cells; Metal Nanoparticles; Mitochondria; Nerve Tissue Proteins; Neurons; Silver Nitrate; Neuroscience (all); Toxicology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/292085
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact