This article displays an efficient and cost effective technique for the removal of unleaded gasoline from water. Multi-walled carbon nanotubes (MWCNTs) were used as the sorbent material. Nanotubes were synthesized according to a well-known procedure and successfully used avoiding cumbersome purifications from traces of catalyst. A series of lab-scale experiments was performed on dispersions of commercial unleaded gasoline (20 mL) in water (30 mL), which were subjected to the action of variable amounts of MWCNTs at room temperature. Physicochemical characteristics and sorbent capacity of nanotubes were investigated by thermal analysis and FT-IR spectroscopy. The highest percentage of removed unleaded gasoline was obtained using small amounts (0.7 g) of MWCNTs, over very short stirring times (5 min). The composition of residual organic materials in water was investigated by 1 H and 13 C high-resolution NMR spectroscopy, which confirmed the almost complete removal of unleaded gasoline hydrocarbon components from polluted waters.

Removal of unleaded gasoline from water by multi-walled carbon nanotubes

LICO, DANIELE;Vuono, Danilo;Siciliano, Carlo;BNAGY, Janos;De Luca, Pierantonio
2019-01-01

Abstract

This article displays an efficient and cost effective technique for the removal of unleaded gasoline from water. Multi-walled carbon nanotubes (MWCNTs) were used as the sorbent material. Nanotubes were synthesized according to a well-known procedure and successfully used avoiding cumbersome purifications from traces of catalyst. A series of lab-scale experiments was performed on dispersions of commercial unleaded gasoline (20 mL) in water (30 mL), which were subjected to the action of variable amounts of MWCNTs at room temperature. Physicochemical characteristics and sorbent capacity of nanotubes were investigated by thermal analysis and FT-IR spectroscopy. The highest percentage of removed unleaded gasoline was obtained using small amounts (0.7 g) of MWCNTs, over very short stirring times (5 min). The composition of residual organic materials in water was investigated by 1 H and 13 C high-resolution NMR spectroscopy, which confirmed the almost complete removal of unleaded gasoline hydrocarbon components from polluted waters.
2019
Multi-walled carbon nanotubes (MWCNTs); NMR spectroscopy; Polluted water remediation; Sorbent materials; Unleaded gasoline; Environmental Engineering; Waste Management and Disposal; Management, Monitoring, Policy and Law
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/292448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 26
social impact