DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.

Hypomethylated drm1 drm2 cmt3 mutant phenotype of Arabidopsis thaliana is related to auxin pathway impairment

Forgione I.;Chiappetta A.;Bitonti M. B.;Bruno L.
2019-01-01

Abstract

DNA methylation carried out by different methyltransferase classes is a relevant epigenetic modification of DNA which plays a relevant role in the development of eukaryotic organisms. Accordingly, in Arabidopsis thaliana loss of DNA methylation due to combined mutations in genes encoding for DNA methyltransferases causes several developmental abnormalities. The present study describes novel growth disorders in the drm1 drm2 cmt3 triple mutant of Arabidopsis thaliana, defective both in maintenance and de novo DNA methylation, and highlights the correlation between DNA methylation and the auxin hormone pathway. By using an auxin responsive reporter gene, we discovered that auxin accumulation and distribution were affected in the mutant compared to the wild type, from embryo to adult plant stage. In addition, we demonstrated that the defective methylation status also affected the expression of genes that regulate auxin hormone pathways from synthesis to transport and signalling and a direct relationship between differentially expressed auxin-related genes and altered auxin accumulation and distribution in embryo, leaf and root was observed. Finally, we provided evidence of the direct and organ-specific modulation of auxin-related genes through the DNA methylation process.
2019
Arabidopsis thaliana; Auxin pathway; DNA methyltransferases; Epigenetics; Arabidopsis; Arabidopsis Proteins; DNA Methylation; DNA-Cytosine Methylases; Epigenesis, Genetic; Genes, Reporter; Indoleacetic Acids; Methyltransferases; Mutation; Organ Specificity; Phenotype; Plant Growth Regulators; Signal Transduction; Genetics; Agronomy and Crop Science; Plant Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/292536
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 28
social impact