Lead is one of the most alarming toxic pollutants for the environment due to its acute toxicity and high bioaccumulation tendency. Despite legislative efforts, world lead production has more than doubled since the early 1970s to 2016. Due to extensive exploitation and human activity, the coastal and estuarine regions belong to marine environments that are mostly and more rapidly deteriorated by pollutants including lead. A limited number of studies examined the effects of lead in fishes, compared to other aquatic models and even fewer studies have been dedicated to seawater fishes especially regarding Pb adsorption and accumulation in specific organs. Fish gills, key compartments involved in several crucial functions such as gas exchange, osmoregulation, and excretion, are also the organs in which Pb is mainly accumulated. Herein, we investigated the morphofunctional and ultrastructural modifications in the gills of a marine teleost (Thalassoma pavo) after acute exposure (48, 96, 192 h) to three lead concentrations. We showed that pathological alterations can be detected in all the examined samples. The most common modifications observed were: the curling of the lamellae and the dilation of their apical tips, the lamellar edema, the proliferation and the hypertrophy of CCs, the progressive epithelial disorganization with detachment of the epithelium from connective tissue. This study also demonstrates that there is a weak influence on the expression pattern of Na+/K+-ATPase and AQP3 biomarker enzymes while high metallothioneins expression has been observed. The described alterations may adversely affect gas exchange and ionic balance, with a long chain of cascading effects. This is the first evidence of the effects exerted by lead on gills of seawater fishes that highlights the harmful properties of this metal, even at low concentration.

Lead toxicity in seawater teleosts: a morphofunctional and ultrastructural study on the gills of the Ornate wrasse (Thalassoma pavo L.)

Rachele Macirella;Settimio Sesti;Ilaria Bernabò;Manuela Tripepi;Nicolas Godbert;Elvira Brunelli
Writing – Review & Editing
2019

Abstract

Lead is one of the most alarming toxic pollutants for the environment due to its acute toxicity and high bioaccumulation tendency. Despite legislative efforts, world lead production has more than doubled since the early 1970s to 2016. Due to extensive exploitation and human activity, the coastal and estuarine regions belong to marine environments that are mostly and more rapidly deteriorated by pollutants including lead. A limited number of studies examined the effects of lead in fishes, compared to other aquatic models and even fewer studies have been dedicated to seawater fishes especially regarding Pb adsorption and accumulation in specific organs. Fish gills, key compartments involved in several crucial functions such as gas exchange, osmoregulation, and excretion, are also the organs in which Pb is mainly accumulated. Herein, we investigated the morphofunctional and ultrastructural modifications in the gills of a marine teleost (Thalassoma pavo) after acute exposure (48, 96, 192 h) to three lead concentrations. We showed that pathological alterations can be detected in all the examined samples. The most common modifications observed were: the curling of the lamellae and the dilation of their apical tips, the lamellar edema, the proliferation and the hypertrophy of CCs, the progressive epithelial disorganization with detachment of the epithelium from connective tissue. This study also demonstrates that there is a weak influence on the expression pattern of Na+/K+-ATPase and AQP3 biomarker enzymes while high metallothioneins expression has been observed. The described alterations may adversely affect gas exchange and ionic balance, with a long chain of cascading effects. This is the first evidence of the effects exerted by lead on gills of seawater fishes that highlights the harmful properties of this metal, even at low concentration.
Lead, Gills, Seawater fishes, Morphofunctional alterations, Ultrastructure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/292694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact