Supramolecular Coordination Compounds (SCCs) represent the power of Coordination Chemistry methodologies to self-assemble discrete architectures with targeted properties. SCCs are generally synthesised in solution, with isolat-ed fully-coordinated metal atoms as structural nodes, thus severely limited as metal-based catalysts. Metal-Organic Frameworks (MOFs) show unique features to act as chemical nanoreactors for the in-situ synthesis and stabilization of otherwise not accessible functional species. Here, we present the self-assembly of PdII SCCs within the confined space of a preformed MOF (SCCs@MOF) and its post-assembly metalation to give a PdII-AuIII supramolecular assembly, crys-tallography underpinned. These SCCs@MOF catalyse the coupling of boronic acids and/or alkynes, representative multisite metallic-catalysed reactions in which traditional SCCs tend to decompose, and retain its structural integrity as consequence of the synergetic hybridization between SCCs and MOF. These results open new avenues in both the synthesis of novel SCCs and their use on heterogeneous metal-based Supramolecular Catalysis.

Self-Assembly of Catalytically-Active Supramolecular Coordination Compounds within Metal-Organic Frameworks

GRECO, ROSSELLA;Armentano, Donatella
;
2019-01-01

Abstract

Supramolecular Coordination Compounds (SCCs) represent the power of Coordination Chemistry methodologies to self-assemble discrete architectures with targeted properties. SCCs are generally synthesised in solution, with isolat-ed fully-coordinated metal atoms as structural nodes, thus severely limited as metal-based catalysts. Metal-Organic Frameworks (MOFs) show unique features to act as chemical nanoreactors for the in-situ synthesis and stabilization of otherwise not accessible functional species. Here, we present the self-assembly of PdII SCCs within the confined space of a preformed MOF (SCCs@MOF) and its post-assembly metalation to give a PdII-AuIII supramolecular assembly, crys-tallography underpinned. These SCCs@MOF catalyse the coupling of boronic acids and/or alkynes, representative multisite metallic-catalysed reactions in which traditional SCCs tend to decompose, and retain its structural integrity as consequence of the synergetic hybridization between SCCs and MOF. These results open new avenues in both the synthesis of novel SCCs and their use on heterogeneous metal-based Supramolecular Catalysis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/293956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
  • ???jsp.display-item.citation.isi??? 46
social impact