Palladium (Pd)-based membranes have received a lot of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. Integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO 2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are, therefore, regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low carbon and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.
Pd-based membranes: Overview and perspectives
Caravella A.
2019-01-01
Abstract
Palladium (Pd)-based membranes have received a lot of attention from both academia and industry thanks to their ability to selectively separate hydrogen from gas streams. Integration of such membranes with appropriate catalysts in membrane reactors allows for hydrogen production with CO 2 capture that can be applied in smaller bioenergy or combined heat and power (CHP) plants, as well as in large-scale power plants. Pd-based membranes are, therefore, regarded as a Key Enabling Technology (KET) to facilitate the transition towards a knowledge-based, low carbon and resource-efficient economy. This Special Issue of the journal Membranes on “Pd-based Membranes: Overview and Perspectives” contains nine peer-reviewed articles. Topics include manufacturing techniques, understanding of material phenomena, module and reactor design, novel applications, and demonstration efforts and industrial exploitation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.