Extending inverse frequent itemsets mining to generate realistic datasets: complexity, accuracy and emerging applications

Sacca D.
;
Serra E.;Rullo A.
2019-01-01

2019
Big data; Classification; Data mining; Frequent itemset mining; Inverse problems; Linear programming; Synthetic dataset
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/296351
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact