Protein phosphorylation is one of the main mechanisms by which signals are transmitted in eukaryotic cells, and it plays a crucial regulatory role in almost all cellular processes. In yeast, more than half of the proteins are phosphorylated in at least one site, and over 20,000 phosphopeptides have been experimentally verified. However, the functional consequences of these phosphorylation events for most of the identified phosphosites are unknown. A family of protein interaction domains selectively recognises phosphorylated motifs to recruit regulatory proteins and activate signalling pathways. Nine classes of dedicated modules are coded by the yeast genome: 14-3-3, FHA, WD40, BRCT, WW, PBD, and SH2. The recognition specificity relies on a few residues on the target protein and has coevolved with kinase specificity. In the present study, we review the current knowledge concerning yeast phospho-binding domains and their networks. We emphasise the relevance of both positive and negative amino acid selection to orchestrate the highly regulated outcomes of inter- and intra-molecular interactions. Finally, we hypothesise that only a small fraction of yeast phosphorylation events leads to the creation of a docking site on the target molecule, while many have a direct effect on the protein or, as has been proposed, have no function at all.

Phospho-peptide binding domains in S. cerevisiae model organism

Panni S.
2019-01-01

Abstract

Protein phosphorylation is one of the main mechanisms by which signals are transmitted in eukaryotic cells, and it plays a crucial regulatory role in almost all cellular processes. In yeast, more than half of the proteins are phosphorylated in at least one site, and over 20,000 phosphopeptides have been experimentally verified. However, the functional consequences of these phosphorylation events for most of the identified phosphosites are unknown. A family of protein interaction domains selectively recognises phosphorylated motifs to recruit regulatory proteins and activate signalling pathways. Nine classes of dedicated modules are coded by the yeast genome: 14-3-3, FHA, WD40, BRCT, WW, PBD, and SH2. The recognition specificity relies on a few residues on the target protein and has coevolved with kinase specificity. In the present study, we review the current knowledge concerning yeast phospho-binding domains and their networks. We emphasise the relevance of both positive and negative amino acid selection to orchestrate the highly regulated outcomes of inter- and intra-molecular interactions. Finally, we hypothesise that only a small fraction of yeast phosphorylation events leads to the creation of a docking site on the target molecule, while many have a direct effect on the protein or, as has been proposed, have no function at all.
2019
14-3-3; Binding domain; BRCT; FHA; Phosphopeptide; WD40; Binding Sites; Phosphopeptides; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Protein Interaction Domains and Motifs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/296519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 9
social impact