This study presents the results of an experimental investigation on the flow-structure interactions at scoured horizontal cylinders, varying the gap between the cylinder and the bed surface. A 2D Particle Image Velocimetry (PIV) system was used to measure the flow field in a vertical plane at the end of the scouring process. Instantaneous and ensemble-averaged velocity and vorticity fields, viscous and Reynolds stresses, and ensemble-averaged turbulence indicators were calculated. Longitudinal bed profiles were measured at the equilibrium. The results revealed that suspended and laid on cylinders behave differently from half-buried cylinders if subjected to the same hydraulic conditions. In the latter case, vortex shedding downstream of the cylinder is suppressed by the presence of the bed surface that causes an asymmetry in the development of the vortices. This implies that strong turbulent mixing processes occur downstream of the uncovered cylinders, whereas in the case of half-buried cylinders they are confined within the scour hole.

Turbulent Flow Field around Horizontal Cylinders with Scour Hole

Nadia Penna;Francesco Coscarella;Roberto Gaudio
2020-01-01

Abstract

This study presents the results of an experimental investigation on the flow-structure interactions at scoured horizontal cylinders, varying the gap between the cylinder and the bed surface. A 2D Particle Image Velocimetry (PIV) system was used to measure the flow field in a vertical plane at the end of the scouring process. Instantaneous and ensemble-averaged velocity and vorticity fields, viscous and Reynolds stresses, and ensemble-averaged turbulence indicators were calculated. Longitudinal bed profiles were measured at the equilibrium. The results revealed that suspended and laid on cylinders behave differently from half-buried cylinders if subjected to the same hydraulic conditions. In the latter case, vortex shedding downstream of the cylinder is suppressed by the presence of the bed surface that causes an asymmetry in the development of the vortices. This implies that strong turbulent mixing processes occur downstream of the uncovered cylinders, whereas in the case of half-buried cylinders they are confined within the scour hole.
2020
horizontal cylinder; turbulence structures; scour.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/297169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact