The problem of Lagrange interpolation of functions of two variables by quadratic polynomials based on nodes which are vertices of a triangulation has been recently studied and local six-tuples of vertices which assure the uniqueness and the optimal-order of the interpolation polynomial are known. Following the idea of Little and the theoretical results on the approximation order and accuracy of the triangular Shepard method, we introduce an hexagonal Shepard operator with quadratic precision and cubic approximation order for the classical problem of scattered data approximation without least square fit.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | On the hexagonal Shepard method |
Autori: | DI TOMMASO, Filomena (Corresponding) |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11770/297340 |
Appare nelle tipologie: | 1.1 Articolo in rivista |