The ability of Nile Red to self-assemble into supramolecular packings on Au(111) was studied using scanning tunneling microscopy and modeled through theoretical semiempirical calculations. At both submonolayer (sub-ML) and ML coverages, two distinct molecular packings, that is, four-leaf clover and dense chain, were observed, both weakly interacting with the underlying metal surface. Theoretical calculations suggested that the dipole moment plays a subtle role in both molecular assemblies, held together by hydrogen bonds between the Nile Red molecules. Furthermore, although both molecular assemblies were observed in as-deposited samples, a mild thermal annealing caused the transition from the four-leaf clover to the dense-chain packing, pointing out the greater stability of the dense-chain configuration. The study further emphasized how the established interactions between the Nile Red molecules are strongly influenced by the surrounding environment. © 2019 American Chemical Society.
Adsorption of Nile Red Self-Assembled Monolayers on Au(111)
De Luca, O.
;Caruso, T.;Ionescu, A.;Godbert, N.;Aiello, I.;Ghedini, M.;Formoso, V.;Agostino, R.
2019-01-01
Abstract
The ability of Nile Red to self-assemble into supramolecular packings on Au(111) was studied using scanning tunneling microscopy and modeled through theoretical semiempirical calculations. At both submonolayer (sub-ML) and ML coverages, two distinct molecular packings, that is, four-leaf clover and dense chain, were observed, both weakly interacting with the underlying metal surface. Theoretical calculations suggested that the dipole moment plays a subtle role in both molecular assemblies, held together by hydrogen bonds between the Nile Red molecules. Furthermore, although both molecular assemblies were observed in as-deposited samples, a mild thermal annealing caused the transition from the four-leaf clover to the dense-chain packing, pointing out the greater stability of the dense-chain configuration. The study further emphasized how the established interactions between the Nile Red molecules are strongly influenced by the surrounding environment. © 2019 American Chemical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.