The goldfish (Carassius auratus) exhibits a remarkable capacity to survive and remain active under prolonged and severe hypoxia, making it a good model for studying cardiac function when oxygen availability is a limiting factor. Under hypoxia, the goldfish heart increases its performance, representing a putative component of hypoxia tolerance; however, the underlying mechanisms have not yet been elucidated. Here, we aimed to investigate the role of β3-adrenoreceptors (ARs) in the mechanisms that modulate goldfish heart performance along with the impact of oxygen levels. By western blotting analysis, we found that the goldfish heart expresses β3-ARs, and this expression increases under hypoxia. The effects of β3-AR stimulation were analysed by using an ex vivo working heart preparation. Under normoxia, the β3-AR-selective agonist BRL37344 (10-12 to 10-7 mol l-1) elicited a concentration-dependent increase of contractility that was abolished by a specific β3-AR antagonist (SR59230A; 10-8 mol l-1), but not by α/β1/β2-AR inhibitors (phentolamine, nadolol and ICI118,551; 10-7 mol l-1). Under acute hypoxia, BRL37344 did not affect goldfish heart performance. However, SR59230A, but not phentolamine, nadolol or ICI118,551, abolished the time-dependent enhancement of contractility that characterizes the hypoxic goldfish heart. Under both normoxia and hypoxia, adenylate cyclase and cAMP were found to be involved in the β3-AR-dependent downstream transduction pathway. In summary, we show the presence of functional β3-ARs in the goldfish heart, whose activation modulates basal performance and contributes to a hypoxia-dependent increase of contractility.

Cardiac influence of the β3-adrenoceptor in the goldfish (Carassius auratus): A protective role under hypoxia?

Leo S.;Gattuso A.;Mazza R.;Filice M.;Cerra M. C.;Imbrogno S.
2019

Abstract

The goldfish (Carassius auratus) exhibits a remarkable capacity to survive and remain active under prolonged and severe hypoxia, making it a good model for studying cardiac function when oxygen availability is a limiting factor. Under hypoxia, the goldfish heart increases its performance, representing a putative component of hypoxia tolerance; however, the underlying mechanisms have not yet been elucidated. Here, we aimed to investigate the role of β3-adrenoreceptors (ARs) in the mechanisms that modulate goldfish heart performance along with the impact of oxygen levels. By western blotting analysis, we found that the goldfish heart expresses β3-ARs, and this expression increases under hypoxia. The effects of β3-AR stimulation were analysed by using an ex vivo working heart preparation. Under normoxia, the β3-AR-selective agonist BRL37344 (10-12 to 10-7 mol l-1) elicited a concentration-dependent increase of contractility that was abolished by a specific β3-AR antagonist (SR59230A; 10-8 mol l-1), but not by α/β1/β2-AR inhibitors (phentolamine, nadolol and ICI118,551; 10-7 mol l-1). Under acute hypoxia, BRL37344 did not affect goldfish heart performance. However, SR59230A, but not phentolamine, nadolol or ICI118,551, abolished the time-dependent enhancement of contractility that characterizes the hypoxic goldfish heart. Under both normoxia and hypoxia, adenylate cyclase and cAMP were found to be involved in the β3-AR-dependent downstream transduction pathway. In summary, we show the presence of functional β3-ARs in the goldfish heart, whose activation modulates basal performance and contributes to a hypoxia-dependent increase of contractility.
Adrenergic receptors; cAMP; Myocardial performance; Teleost; Transduction pathway
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/299413
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact