This study deals with an experimental investigation into the trans-esterification behavior of two biocatalysts produced by different immobilization techniques of the same lipase from Pseudomonas cepacia. Biocatalysts catalyzed trans-esterification of commercial frying oil. It was verified that no enzyme leaching occurs and stepwise addition of ethanol is needed to improve the process performance. When stoichiometric ethanol has been added completely at the beginning of the reaction, percent mass fraction of esters reached 33% after 9 h and 52% after 30 h. Instead, when ethanol has been added in steps, ester production gradually increased at any time. Moreover, different amounts of biocatalyst were added to the reaction system and it was found that it is not necessary to add more than 3% of biocatalyst with respect to the oil mass to avoid inhibition. The immobilization method influences the reaction progress and the intermediate-glyceride profiles were analyzed. Results showed that the two biocatalysts have the same affinity towards triglycerides, but the covalently immobilized lipase (epobond P. cepacia) has a lower affinity towards diglycerides and monoglycerides and, in general, a lower activity than the absorbed lipase (lipo P. cepacia).

Comparative analysis of immobilized biocatalyst: study of process variables in trans-esterification reaction

Lopresto C. G.
Conceptualization
;
De Paola M. G.
Conceptualization
;
Policicchio M. F.
Formal Analysis
;
Chakraborty S.
;
Calabro V.
Supervision
2019-01-01

Abstract

This study deals with an experimental investigation into the trans-esterification behavior of two biocatalysts produced by different immobilization techniques of the same lipase from Pseudomonas cepacia. Biocatalysts catalyzed trans-esterification of commercial frying oil. It was verified that no enzyme leaching occurs and stepwise addition of ethanol is needed to improve the process performance. When stoichiometric ethanol has been added completely at the beginning of the reaction, percent mass fraction of esters reached 33% after 9 h and 52% after 30 h. Instead, when ethanol has been added in steps, ester production gradually increased at any time. Moreover, different amounts of biocatalyst were added to the reaction system and it was found that it is not necessary to add more than 3% of biocatalyst with respect to the oil mass to avoid inhibition. The immobilization method influences the reaction progress and the intermediate-glyceride profiles were analyzed. Results showed that the two biocatalysts have the same affinity towards triglycerides, but the covalently immobilized lipase (epobond P. cepacia) has a lower affinity towards diglycerides and monoglycerides and, in general, a lower activity than the absorbed lipase (lipo P. cepacia).
2019
Biocatalyst; Immobilization; Pseudomonas cepacia; Reaction system; Trans-esterification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/300149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact