Chemical modification of proteins is a vintage strategy that is still fashionable due to the information that can be obtained from this approach. An interesting application of chemical modification is linked with membrane transporters. These proteins have peculiar features such as the presence of hydrophobic and hydrophilic domains, which show different degree of accessibility to chemicals. The presence of reactive residues in the membrane transporters is at the basis of the chemical targeting strategy devoted to investigating structure/function relationships; in particular, information on the substrate binding site, regulatory domains, dimerization domains, and the interface between hydrophilic loops and transmembrane domains has been obtained over the years by chemical targeting. Given the difficulty in handling membrane transporters, their study experienced a great delay, particularly concerning structural information. Chemical targeting has been applied with reasonable success to some membrane transporters belonging to the families SLC1, SLC6, SLC7, and SLC22. Furthermore, some data on the potential application of chemical targeting in pharmacology are also discussed.

Chemical Targeting of Membrane Transporters: Insights into Structure/Function Relationships

Scalise M.;Console L.;Galluccio M.;Pochini L.;Indiveri C.
2020-01-01

Abstract

Chemical modification of proteins is a vintage strategy that is still fashionable due to the information that can be obtained from this approach. An interesting application of chemical modification is linked with membrane transporters. These proteins have peculiar features such as the presence of hydrophobic and hydrophilic domains, which show different degree of accessibility to chemicals. The presence of reactive residues in the membrane transporters is at the basis of the chemical targeting strategy devoted to investigating structure/function relationships; in particular, information on the substrate binding site, regulatory domains, dimerization domains, and the interface between hydrophilic loops and transmembrane domains has been obtained over the years by chemical targeting. Given the difficulty in handling membrane transporters, their study experienced a great delay, particularly concerning structural information. Chemical targeting has been applied with reasonable success to some membrane transporters belonging to the families SLC1, SLC6, SLC7, and SLC22. Furthermore, some data on the potential application of chemical targeting in pharmacology are also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/300619
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact