FAD synthase, the last enzyme of the pathway converting riboflavin to FAD, exists in humans in different isoforms, with isoforms 1, 2 and 6 being characterized at the functional and molecular levels. Isoform 2, the cytosolic and most abundant FADS, consists of two domains: a PAPS reductase C-terminus domain (here named FADSy) responsible for FAD synthesis, and an N-terminus molybdopterin-binding resembling domain (MPTb - here named FADHy), whose FAD hydrolytic activity is hidden unless both Co2+ and chemical mercurial reagents are added to the enzyme. To investigate the hFADS2 hydrolytic function under conditions closer to the physiological context, the hydrolytic activity was further characterized. Co2+ induced FAD hydrolysis was strongly stimulated in the presence of K+, reaching a Vmax higher than that of FAD synthesis. The pH dependence together with the inhibition of the hydrolysis by NaF and KI allow excluding that the reaction occurs via a NUDIX type catalysis. The K0.5 for K+ or Co2+ was 7.2 or 0.035 mM, respectively. Other monovalent or divalent cations can partially substitute K+ or Co2+. Reduced glutathione stimulated whereas NADH inhibited the hydrolytic activity. The latter aspects correlate with an interconnection of the homeostasis of NAD and FAD.

The hidden side of the human FAD synthase 2

Leone P.;Galluccio M.;Indiveri C.;
2019

Abstract

FAD synthase, the last enzyme of the pathway converting riboflavin to FAD, exists in humans in different isoforms, with isoforms 1, 2 and 6 being characterized at the functional and molecular levels. Isoform 2, the cytosolic and most abundant FADS, consists of two domains: a PAPS reductase C-terminus domain (here named FADSy) responsible for FAD synthesis, and an N-terminus molybdopterin-binding resembling domain (MPTb - here named FADHy), whose FAD hydrolytic activity is hidden unless both Co2+ and chemical mercurial reagents are added to the enzyme. To investigate the hFADS2 hydrolytic function under conditions closer to the physiological context, the hydrolytic activity was further characterized. Co2+ induced FAD hydrolysis was strongly stimulated in the presence of K+, reaching a Vmax higher than that of FAD synthesis. The pH dependence together with the inhibition of the hydrolysis by NaF and KI allow excluding that the reaction occurs via a NUDIX type catalysis. The K0.5 for K+ or Co2+ was 7.2 or 0.035 mM, respectively. Other monovalent or divalent cations can partially substitute K+ or Co2+. Reduced glutathione stimulated whereas NADH inhibited the hydrolytic activity. The latter aspects correlate with an interconnection of the homeostasis of NAD and FAD.
FAD; FAD hydrolysis; Human FAD synthase; Molybdopterin-binding domain; NAD; Amino Acid Sequence; Catalysis; Fatty Acid Desaturases; Fluorometry; Humans; Hydrolysis; Kinetics; Recombinant Fusion Proteins
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/300624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact