Haptic device manipulators are used for generating haptic feedback. This feedback is composed of force which is regulated with respect to motion information. Accurate generation of the feedback requires exact position acquisition of the end-effector. Due to the compliant bodies of a manipulator, a stiffness model is needed to predict this position. Previously, Virtual Joint Method was adopted to obtain the stiffness model of an R-CUBE parallel haptic mechanism. In this paper, experimental test setup and experimental procedure are described for validating this stiffness model, its engineering feasibility and soundness of the proposed model.
An Experimental Test Procedure for Validation of Stiffness Model: A Case Study for R-CUBE Parallel Mechanism
Carbone G.
2020-01-01
Abstract
Haptic device manipulators are used for generating haptic feedback. This feedback is composed of force which is regulated with respect to motion information. Accurate generation of the feedback requires exact position acquisition of the end-effector. Due to the compliant bodies of a manipulator, a stiffness model is needed to predict this position. Previously, Virtual Joint Method was adopted to obtain the stiffness model of an R-CUBE parallel haptic mechanism. In this paper, experimental test setup and experimental procedure are described for validating this stiffness model, its engineering feasibility and soundness of the proposed model.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.