We report on the strengths and limitations of scanning tunnelling microscopy (STM) when used for characterising atomic-scale features of quasi two-dimensional materials, such as graphene and single layers of hexagonal boron nitride, which may present strong corrugations when grown epitaxially on a substrate with a lattice mismatch. As a paradigmatic test case, we choose single-layer and bilayer graphene on Ru(0001), because their STM images show both a long-range moiré modulation and complex atomic-scale distortions of the graphene lattice. Through high-resolution STM measurements, we first determine with high accuracy the moiré epitaxial relations of the single layer and the bilayer with respect to the metal substrate. In particular, we also provide direct evidence for the existence of AA-stacked bilayer graphene domains on Ru(0001). We then demonstrate that the local strain distribution, as inferred from the same STM images, can be affected by large errors, so that apparent giant strains arise in some regions of the moiré as an imaging artefact. With the aid of density functional theory simulations, we track down the origin of these fictitious distortions in the high directionality of the graphene π-orbital density combined with the large corrugation of the sample. The proposed theoretical model correctly accounts for the observed dependence of the apparent strain on the STM tip-sample separation and on the different degree of curvature of the second graphene layer with respect to the single layer.

Giant apparent lattice distortions in STM images of corrugated sp2-hybridised monolayers

Papagno M.
Membro del Collaboration Group
;
2016

Abstract

We report on the strengths and limitations of scanning tunnelling microscopy (STM) when used for characterising atomic-scale features of quasi two-dimensional materials, such as graphene and single layers of hexagonal boron nitride, which may present strong corrugations when grown epitaxially on a substrate with a lattice mismatch. As a paradigmatic test case, we choose single-layer and bilayer graphene on Ru(0001), because their STM images show both a long-range moiré modulation and complex atomic-scale distortions of the graphene lattice. Through high-resolution STM measurements, we first determine with high accuracy the moiré epitaxial relations of the single layer and the bilayer with respect to the metal substrate. In particular, we also provide direct evidence for the existence of AA-stacked bilayer graphene domains on Ru(0001). We then demonstrate that the local strain distribution, as inferred from the same STM images, can be affected by large errors, so that apparent giant strains arise in some regions of the moiré as an imaging artefact. With the aid of density functional theory simulations, we track down the origin of these fictitious distortions in the high directionality of the graphene π-orbital density combined with the large corrugation of the sample. The proposed theoretical model correctly accounts for the observed dependence of the apparent strain on the STM tip-sample separation and on the different degree of curvature of the second graphene layer with respect to the single layer.
graphene; hexagonal boron-nitride; moir patterns; Rh(111); Ru(0001); scanning tunneling microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/303148
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact