Nowadays, sustainable development is considered a key concept and solution in creating a promising and prosperous future for human societies. Nevertheless, there are some predicted and unpredicted problems that epidemic diseases are real and complex problems. Hence, in this research work, a serious challenge in the sustainable development process was investigated using the classification of confirmed cases of COVID-19 (new version of Coronavirus) as one of the epidemic diseases. Hence, binary classification modeling was used by the group method of data handling (GMDH) type of neural network as one of the artificial intelligence methods. For this purpose, the Hubei province in China was selected as a case study to construct the proposed model, and some important factors, namely maximum, minimum, and average daily temperature, the density of a city, relative humidity, and wind speed, were considered as the input dataset, and the number of confirmed cases was selected as the output dataset for 30 days. The proposed binary classification model provides higher performance capacity in predicting the confirmed cases. In addition, regression analysis has been done and the trend of confirmed cases compared with the fluctuations of daily weather parameters (wind, humidity, and average temperature). The results demonstrated that the relative humidity and maximum daily temperature had the highest impact on the confirmed cases. The relative humidity in the main case study, with an average of 77.9%, affected positively, and maximum daily temperature, with an average of 15.4 °C, affected negatively, the confirmed cases.

Investigating a Serious Challenge in the Sustainable Development Process: Analysis of Confirmed cases of COVID-19 (New Type of Coronavirus) Through a Binary Classification Using Artificial Intelligence and Regression Analysis.

Pirouz B.;Shaffiee Haghshenas
;
Shaffiee Haghshenas;Piro P.
2020

Abstract

Nowadays, sustainable development is considered a key concept and solution in creating a promising and prosperous future for human societies. Nevertheless, there are some predicted and unpredicted problems that epidemic diseases are real and complex problems. Hence, in this research work, a serious challenge in the sustainable development process was investigated using the classification of confirmed cases of COVID-19 (new version of Coronavirus) as one of the epidemic diseases. Hence, binary classification modeling was used by the group method of data handling (GMDH) type of neural network as one of the artificial intelligence methods. For this purpose, the Hubei province in China was selected as a case study to construct the proposed model, and some important factors, namely maximum, minimum, and average daily temperature, the density of a city, relative humidity, and wind speed, were considered as the input dataset, and the number of confirmed cases was selected as the output dataset for 30 days. The proposed binary classification model provides higher performance capacity in predicting the confirmed cases. In addition, regression analysis has been done and the trend of confirmed cases compared with the fluctuations of daily weather parameters (wind, humidity, and average temperature). The results demonstrated that the relative humidity and maximum daily temperature had the highest impact on the confirmed cases. The relative humidity in the main case study, with an average of 77.9%, affected positively, and maximum daily temperature, with an average of 15.4 °C, affected negatively, the confirmed cases.
sustainable development
COVID-19
GMDH algorithm
binary classification
environmental factors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/304574
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 107
social impact