We extend a previous numerical study of SU(3) Yang–Mills theory in which we measured the spatial distribution of all components of the color fields surrounding a static quark–antiquark pair and provided evidence that the simulated gauge invariant chromoelectric field can be separated into a Coulomb-like ‘perturbative’ field and a ‘non-perturbative’ confining field. In this paper we hypothesize that the fluctuating color fields not measured in our simulations do not contribute to the string tension. Under this assumption the string tension is determined by the color fields we measure, which form a field strength tensor pointing in a single direction in color space. We call this the ‘Maxwell picture of confinement’. We provide an additional procedure to isolate the confining field. We then extract the string tension from a stress energy-momentum tensor having the Maxwell form, constructed from the simulated non-perturbative part of the field strength tensor. To test our hypothesis we calculate the string tension for values of the quark–antiquark separation ranging from 0.37 fm to 1.2 fm. We also calculate the spatial distributions of the energy-momentum tensor surrounding static quarks for this range of separations, and we compare with the distributions obtained from direct simulations of the energy-momentum tensor.

The confining color field in SU(3) gauge theory

A. Papa
Membro del Collaboration Group
2020

Abstract

We extend a previous numerical study of SU(3) Yang–Mills theory in which we measured the spatial distribution of all components of the color fields surrounding a static quark–antiquark pair and provided evidence that the simulated gauge invariant chromoelectric field can be separated into a Coulomb-like ‘perturbative’ field and a ‘non-perturbative’ confining field. In this paper we hypothesize that the fluctuating color fields not measured in our simulations do not contribute to the string tension. Under this assumption the string tension is determined by the color fields we measure, which form a field strength tensor pointing in a single direction in color space. We call this the ‘Maxwell picture of confinement’. We provide an additional procedure to isolate the confining field. We then extract the string tension from a stress energy-momentum tensor having the Maxwell form, constructed from the simulated non-perturbative part of the field strength tensor. To test our hypothesis we calculate the string tension for values of the quark–antiquark separation ranging from 0.37 fm to 1.2 fm. We also calculate the spatial distributions of the energy-momentum tensor surrounding static quarks for this range of separations, and we compare with the distributions obtained from direct simulations of the energy-momentum tensor.
Confinement in SU(3)
Flux tubes in SU(3)
Monte Carlo simulations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/304958
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact