The use of DNA-based therapeutics requires efficient delivery systems to transport the DNA to their place of action within the cell. To accomplish this, we investigated multiwalled carbon nanotubes (pristine MWCNT, p-MWCNT) functionalized with hydroxyl groups via 1,3-dipolar cycloaddition. In this way, we have obtained MWCNT-f-OH with improved stability in aqueous dispersions which is an advantageous property for their use in cellular environments. Afterwards, a carrier strand oligodeoxynucleotide (CS-ODN) was adsorbed to MWCNT-f-OH followed by hybridization with a therapeutic antisense oligodeoxynucleotide (AS-ODN). The amount of adsorbed CS-ODN, as well as the complementary AS-ODN and a non-complementary oligodeoxynucleotide (NS-ODN) as reference, was directly measured by radionuclide labeling of ODNs. We show that subsequent release of AS-ODNs and NS-ODNs was possible for MWCNT-f-OH above the melting temperature of AS-ODNs at 80 °C and under physiological conditions at different pH values at 37°C. We also show a very low influence of p-MWCNT and MWCNT-f-OH on the cell viability of the bladder carcinoma (BCa) cell line EJ28 and that both MWCNT types were internalized by EJ28. Therefore, MWCNT-f-OH represents a promising carrier able to transport and release AS-ODNs inside cells. This journal is
Functionalized carbon nanotubes as transporters for antisense oligodeoxynucleotides
Cirillo G.;
2014-01-01
Abstract
The use of DNA-based therapeutics requires efficient delivery systems to transport the DNA to their place of action within the cell. To accomplish this, we investigated multiwalled carbon nanotubes (pristine MWCNT, p-MWCNT) functionalized with hydroxyl groups via 1,3-dipolar cycloaddition. In this way, we have obtained MWCNT-f-OH with improved stability in aqueous dispersions which is an advantageous property for their use in cellular environments. Afterwards, a carrier strand oligodeoxynucleotide (CS-ODN) was adsorbed to MWCNT-f-OH followed by hybridization with a therapeutic antisense oligodeoxynucleotide (AS-ODN). The amount of adsorbed CS-ODN, as well as the complementary AS-ODN and a non-complementary oligodeoxynucleotide (NS-ODN) as reference, was directly measured by radionuclide labeling of ODNs. We show that subsequent release of AS-ODNs and NS-ODNs was possible for MWCNT-f-OH above the melting temperature of AS-ODNs at 80 °C and under physiological conditions at different pH values at 37°C. We also show a very low influence of p-MWCNT and MWCNT-f-OH on the cell viability of the bladder carcinoma (BCa) cell line EJ28 and that both MWCNT types were internalized by EJ28. Therefore, MWCNT-f-OH represents a promising carrier able to transport and release AS-ODNs inside cells. This journal isI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.