The aim of this paper is to illustrate the design of a new wave energy converter, composed of a point absorber and a hydraulic system (power take off) and sized for recovering energy in calm seas from waves near the shore. The point absorber is consisting of a rectangular shaped buoy integrating a piston pump. The set buoy-pump oscillates under the waves action and moves natural water in a closed circuit hydraulic system (power take off) composed of a piping connecting the piston pump itself, a pressurized reservoir, a hydraulic turbine and a discharge tank. The methodology adopted for designing the main constituents involves a 1D mathematical model, settled for understanding the motion of the buoy under the hypothesis of regular waves and fully developed sea, and a sizing procedure applied for the design of all the components of the hydraulic system. The project related to the Calabrian site of Cetraro (Mediterranean Sea—south Italy) led to designing a system with a 4 m large buoy, associated with a small 13 cm diameter micro Pelton turbine, so that more than 22 000 kWh could be recovered in a year.

Design and analysis of a new wave energy converter based on a point absorber and a hydraulic system harvesting energy from waves near the shore in calm seas

Barbarelli S.
;
Amelio M.;Castiglione T.;Florio G.;Scornaienchi N. M.
2020-01-01

Abstract

The aim of this paper is to illustrate the design of a new wave energy converter, composed of a point absorber and a hydraulic system (power take off) and sized for recovering energy in calm seas from waves near the shore. The point absorber is consisting of a rectangular shaped buoy integrating a piston pump. The set buoy-pump oscillates under the waves action and moves natural water in a closed circuit hydraulic system (power take off) composed of a piping connecting the piston pump itself, a pressurized reservoir, a hydraulic turbine and a discharge tank. The methodology adopted for designing the main constituents involves a 1D mathematical model, settled for understanding the motion of the buoy under the hypothesis of regular waves and fully developed sea, and a sizing procedure applied for the design of all the components of the hydraulic system. The project related to the Calabrian site of Cetraro (Mediterranean Sea—south Italy) led to designing a system with a 4 m large buoy, associated with a small 13 cm diameter micro Pelton turbine, so that more than 22 000 kWh could be recovered in a year.
2020
energy output estimation
Pelton turbine
piston pump
point absorber
pressure control
sizing procedure
wave energy
WEC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/307175
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact