Numerical computing is a key part of the traditional computer architecture. Almost all traditional computers implement the IEEE 754-1985 binary floating point standard to represent and work with numbers. The architectural limitations of traditional computers make impossible to work with infinite and infinitesimal quantities numerically. This paper is dedicated to the Infinity Computer, a new kind of a supercomputer that allows one to perform numerical computations with finite, infinite, and infinitesimal numbers. The already available software simulator of the Infinity Computer is used in different research domains for solving important real-world problems, where precision represents a key aspect. However, the software simulator is not suitable for solving problems in control theory and dynamics, where visual programming tools like Simulink are used frequently. In this context, the paper presents an innovative solution that allows one to use the Infinity Computer arithmetic within the Simulink environment. It is shown that the proposed solution is user-friendly, general purpose, and domain independent.
Representation of grossone-based arithmetic in simulink for scientific computing
Alberto Falcone
;Alfredo Garro;Marat Mukhametzhanov;Yaroslav Sergeyev
2020-01-01
Abstract
Numerical computing is a key part of the traditional computer architecture. Almost all traditional computers implement the IEEE 754-1985 binary floating point standard to represent and work with numbers. The architectural limitations of traditional computers make impossible to work with infinite and infinitesimal quantities numerically. This paper is dedicated to the Infinity Computer, a new kind of a supercomputer that allows one to perform numerical computations with finite, infinite, and infinitesimal numbers. The already available software simulator of the Infinity Computer is used in different research domains for solving important real-world problems, where precision represents a key aspect. However, the software simulator is not suitable for solving problems in control theory and dynamics, where visual programming tools like Simulink are used frequently. In this context, the paper presents an innovative solution that allows one to use the Infinity Computer arithmetic within the Simulink environment. It is shown that the proposed solution is user-friendly, general purpose, and domain independent.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.