A nanostructured hybrid material consisting of TiO2 nanoparticles grown and stabilized on graphene oxide (GO) platelets, was synthesized and tested as nanofiller in a polymeric matrix of sulfonated polysulfone (sPSU) for the preparation of new and low-cost nanocomposite electrolytes for proton exchange membrane fuel cell (PEMFC) applications. GO-TiO2 hybrid material combines the nanoscale structure, large interfacial area, and mechanical features of a 2D, layered material, and the hygroscopicity properties of ceramic oxides, able to maintain a suitable hydration of the membrane under harsh fuel cell operative conditions. GO-TiO2 was synthetized through a new, simple, one-pot hydrothermal procedure, while nanocomposite membranes were prepared by casting using different filler loadings. Both material and membranes were investigated by a combination of XRD, Raman, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while extensive studies on the proton transport properties were carried out by Electrochemical Impedance Spectroscopy (EIS) measurements and pulse field gradient (PFG) NMR spectroscopy. The addition of GO-TiO2 to the sPSU produced a highly stable network, with an increasing of the storage modulus three-fold higher than the filler-free sPSU membrane. Moreover, the composite membrane with 3 wt.% of filler content demonstrated very high water-retention capacity at high temperatures as well as a remarkable proton mobility, especially in very low relative humidity conditions, marking a step ahead of the state of the art in PEMs. This suggests that an architecture between polymer and filler was created with interconnected routes for an efficient proton transport.

Titanium dioxide grafted on graphene oxide: Hybrid nanofiller for effective and low-cost proton exchange membranes

Simari C.;Lufrano E.;Godbert N.;Coppola L.;Nicotera I.
2020-01-01

Abstract

A nanostructured hybrid material consisting of TiO2 nanoparticles grown and stabilized on graphene oxide (GO) platelets, was synthesized and tested as nanofiller in a polymeric matrix of sulfonated polysulfone (sPSU) for the preparation of new and low-cost nanocomposite electrolytes for proton exchange membrane fuel cell (PEMFC) applications. GO-TiO2 hybrid material combines the nanoscale structure, large interfacial area, and mechanical features of a 2D, layered material, and the hygroscopicity properties of ceramic oxides, able to maintain a suitable hydration of the membrane under harsh fuel cell operative conditions. GO-TiO2 was synthetized through a new, simple, one-pot hydrothermal procedure, while nanocomposite membranes were prepared by casting using different filler loadings. Both material and membranes were investigated by a combination of XRD, Raman, FTIR, thermo-mechanical analysis (TGA and Dynamic Mechanical Analysis) and SEM microscopy, while extensive studies on the proton transport properties were carried out by Electrochemical Impedance Spectroscopy (EIS) measurements and pulse field gradient (PFG) NMR spectroscopy. The addition of GO-TiO2 to the sPSU produced a highly stable network, with an increasing of the storage modulus three-fold higher than the filler-free sPSU membrane. Moreover, the composite membrane with 3 wt.% of filler content demonstrated very high water-retention capacity at high temperatures as well as a remarkable proton mobility, especially in very low relative humidity conditions, marking a step ahead of the state of the art in PEMs. This suggests that an architecture between polymer and filler was created with interconnected routes for an efficient proton transport.
2020
Graphene oxide
Nanocomposite membranes
PEMFCs
Proton transport
Sulfonated polysulfone
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/307749
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact