The rapid urbanization and water shortage impose an urgent need in improving sustainable water management without compromising the socioeconomic development all around the world. In this context, reclaimed wastewater has been recognized as a sustainable water management strategy since it represents an alternative water resource for non-potable or (indirect) potable use. The conventional wastewater remediation approaches for the removal of different emerging contaminants (pharmaceuticals, dyes, metal ions, etc.) are unable to remove/destroy them completely. Hybrid membrane processes (HMPs) are a powerful solution for removing emerging pollutants from wastewater. On this aspect, the present paper focused on HMPs obtained by the synergic coupling of biological and/or chemical reaction driven processes with membrane processes, giving a critical overview and particular emphasis on some case studies reported in the pertinent literature. By using these processes, a satisfactory quality of treated water can be achieved, permitting its sustainable reuse in the hydrologic cycle while minimizing environmental and economic impact.

Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment

R. Molinari
;
C. Lavorato;P. Argurio
2020

Abstract

The rapid urbanization and water shortage impose an urgent need in improving sustainable water management without compromising the socioeconomic development all around the world. In this context, reclaimed wastewater has been recognized as a sustainable water management strategy since it represents an alternative water resource for non-potable or (indirect) potable use. The conventional wastewater remediation approaches for the removal of different emerging contaminants (pharmaceuticals, dyes, metal ions, etc.) are unable to remove/destroy them completely. Hybrid membrane processes (HMPs) are a powerful solution for removing emerging pollutants from wastewater. On this aspect, the present paper focused on HMPs obtained by the synergic coupling of biological and/or chemical reaction driven processes with membrane processes, giving a critical overview and particular emphasis on some case studies reported in the pertinent literature. By using these processes, a satisfactory quality of treated water can be achieved, permitting its sustainable reuse in the hydrologic cycle while minimizing environmental and economic impact.
membrane technology; hybrid membrane processes; photocatalytic membrane reactors; liquid membranes; complexation-ultrafiltration; wastewater treatment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/307999
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact