The aim of this work was to analyze the potential of reverse osmosis (RO) membranes in the recovery and concentration of aroma compounds from orange juice evaporator condensate (EC) streams. Concentration experiments were performed by using three RO spiral-wound aromatic polyamide membranes (SG1812C-34D, SC1812C-34D and SE1812) with different NaCl rejections. The effect of transmembrane pressure, axial feed flowrate and volume concentration ratio (VCR) on permeate flux was studied. Rejections of the investigated membranes towards specific aroma compounds (octanol, α-terpineol, terpinen-4-ol, cis-carveol, karvon, linalool) in selected operating conditions were also evaluated. The concentrations of the aroma compounds were determined by gas chromatography coupled with mass spectrometry (GC-MS) using headspace solid-phase microextraction (HS-SPME) as a sample preparation approach. For all selected membranes, the permeate flux increased linearly by increasing the operating pressure from 5 to 25 bar; on the other hand, the feed flowrate did not have any significant effect on the permeate flux. High retention values towards aroma compounds (>80%) were measured for all selected membranes. However, the SC membrane showed the highest rejection values (>96%) and the best correlation between concentration factor of aroma compounds and VCR.
Recovery of aromatics from orange juice evaporator condensate streams by reverse osmosis
Destani F.;Naccarato A.;Tagarelli A.;
2020-01-01
Abstract
The aim of this work was to analyze the potential of reverse osmosis (RO) membranes in the recovery and concentration of aroma compounds from orange juice evaporator condensate (EC) streams. Concentration experiments were performed by using three RO spiral-wound aromatic polyamide membranes (SG1812C-34D, SC1812C-34D and SE1812) with different NaCl rejections. The effect of transmembrane pressure, axial feed flowrate and volume concentration ratio (VCR) on permeate flux was studied. Rejections of the investigated membranes towards specific aroma compounds (octanol, α-terpineol, terpinen-4-ol, cis-carveol, karvon, linalool) in selected operating conditions were also evaluated. The concentrations of the aroma compounds were determined by gas chromatography coupled with mass spectrometry (GC-MS) using headspace solid-phase microextraction (HS-SPME) as a sample preparation approach. For all selected membranes, the permeate flux increased linearly by increasing the operating pressure from 5 to 25 bar; on the other hand, the feed flowrate did not have any significant effect on the permeate flux. High retention values towards aroma compounds (>80%) were measured for all selected membranes. However, the SC membrane showed the highest rejection values (>96%) and the best correlation between concentration factor of aroma compounds and VCR.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.