In this paper, we propose a pen device capable of detecting specific features from dynamic handwriting tests for aiding on automatic Parkinson’s disease identification. The method used in this work uses machine learning to compare the raw signals from different sensors in the device coupled to a pen and extract relevant information such as tremors and hand acceleration to diagnose the patient clinically. Additionally, the datasets composed of raw signals from healthy and Parkinson’s disease patients acquired here are made available to further contribute to research related to this topic.

Intelligent sensory pen for aiding in the diagnosis of parkinson’s disease from dynamic handwriting analysis

Fortino G.
2020

Abstract

In this paper, we propose a pen device capable of detecting specific features from dynamic handwriting tests for aiding on automatic Parkinson’s disease identification. The method used in this work uses machine learning to compare the raw signals from different sensors in the device coupled to a pen and extract relevant information such as tremors and hand acceleration to diagnose the patient clinically. Additionally, the datasets composed of raw signals from healthy and Parkinson’s disease patients acquired here are made available to further contribute to research related to this topic.
Handwritten dynamics
Machine learning
Parkinson’s disease
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/308500
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact