Hyper-cross-linked porous polymers (HCPs) are proposed as sorbents for the removal of aromatic volatile pollutants by using toluene as a representative of the BTX family. The hierarchical (micro and meso) porous architecture of the HCPs has been established by N2 physisorption at 77 K while the toluene adsorption capacities were determined by volumetric adsorption at 308 K. The HCPs display very high toluene uptakes, reaching adsorption capacities as high as 154% in weight for the polymer obtained with a tetraphenylmethane (TPM) and a formaldehyde dimethyl acetal (FDA) ratio of 1/16, whereas only very low uptakes were observed for aliphatic molecules such as n-hexane. HCP materials experience swelling effects evaluated by comparing the volume assessed via N2 physisorption with the volume occupied by toluene molecules in volumetric adsorption experiments. A multispectroscopic approach involving FT-IR and solid-state NMR techniques gave direct proof of the close spatial proximity between the polymeric host framework and guest BTX molecules. Solid-state 1H and 13C NMR spectroscopies have unambiguously identified the presence of CH/π interactions between the guest molecules and the porous framework of the hyper-cross-linked polymers.

Hyper-Cross-Linked Polymers for the Capture of Aromatic Volatile Compounds

A. Melicchio;G. Golemme;
2020-01-01

Abstract

Hyper-cross-linked porous polymers (HCPs) are proposed as sorbents for the removal of aromatic volatile pollutants by using toluene as a representative of the BTX family. The hierarchical (micro and meso) porous architecture of the HCPs has been established by N2 physisorption at 77 K while the toluene adsorption capacities were determined by volumetric adsorption at 308 K. The HCPs display very high toluene uptakes, reaching adsorption capacities as high as 154% in weight for the polymer obtained with a tetraphenylmethane (TPM) and a formaldehyde dimethyl acetal (FDA) ratio of 1/16, whereas only very low uptakes were observed for aliphatic molecules such as n-hexane. HCP materials experience swelling effects evaluated by comparing the volume assessed via N2 physisorption with the volume occupied by toluene molecules in volumetric adsorption experiments. A multispectroscopic approach involving FT-IR and solid-state NMR techniques gave direct proof of the close spatial proximity between the polymeric host framework and guest BTX molecules. Solid-state 1H and 13C NMR spectroscopies have unambiguously identified the presence of CH/π interactions between the guest molecules and the porous framework of the hyper-cross-linked polymers.
2020
hyper-cross-linked polymers, aromatic pollutants adsorption, noncovalent interactions, volumetric adsorption, ss-NMR spectroscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/308507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact