Structures made of carbon fiber-reinforced polymer (CFRP) can be assembled using adhesive bonding. However, such bonding is prone to brittle delamination, and a method to improve delamination resistance is desirable. Here, we propose a technique to introduce crack-arrest features that increase the R-curve response by engineering the adhesive bondline/interface. We specifically designed a wavy net-like thermoplastic insert that was embedded into the thermoset adhesive bondline where the new mechanisms of energy dissipation were generated. We demonstrate that the technique is effective at improving mode I fracture toughness of secondary bonded carbon/epoxy by more than 400%. The hybrid thermoset/thermoplastic bondline architecture was carefully tailored to achieve its best performance. We demonstrate that introducing porosities in the adhesive bondline (by adding a limited amount of thermoset adhesive) further improves the fracture toughness. This toughness improvement originates from the extrinsic toughening of the crack-arrest feature, which is enabled by the insert ductility and microstructures (via strand formation, anchoring and stretching).

Enhancement of fracture toughness in secondary bonded CFRP using hybrid thermoplastic/thermoset bondline architecture

Alfano M.;
2020-01-01

Abstract

Structures made of carbon fiber-reinforced polymer (CFRP) can be assembled using adhesive bonding. However, such bonding is prone to brittle delamination, and a method to improve delamination resistance is desirable. Here, we propose a technique to introduce crack-arrest features that increase the R-curve response by engineering the adhesive bondline/interface. We specifically designed a wavy net-like thermoplastic insert that was embedded into the thermoset adhesive bondline where the new mechanisms of energy dissipation were generated. We demonstrate that the technique is effective at improving mode I fracture toughness of secondary bonded carbon/epoxy by more than 400%. The hybrid thermoset/thermoplastic bondline architecture was carefully tailored to achieve its best performance. We demonstrate that introducing porosities in the adhesive bondline (by adding a limited amount of thermoset adhesive) further improves the fracture toughness. This toughness improvement originates from the extrinsic toughening of the crack-arrest feature, which is enabled by the insert ductility and microstructures (via strand formation, anchoring and stretching).
2020
A. Adhesive joints
A. Laminate
B. Delamination
B. Fracture toughness
B. Interface
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/308697
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact