A study on the effect of silica nanoparticles (SNPs) dispersion in bitumen is herein reported. First, the size of the nanoparticles was finely tuned by controlling the experimental conditions during their synthesis, obtaining spherical SNPs with diameter ranging from 95 up to 900 nm. Subsequently, SNPs were embedded with peripheral amine groups by using APTES (3-aminopropyltriethoxysilane) as functionalized agent (NH2@SNP), and ultimately long alkyl chains were grafted by reacting the free amine with an alkylated aldehyde (C14N@SNP). All SNPs (ca. 1 wt%.) were dispersed in bitumen to probe their effect on the rheological properties of bitumen. No significant change in the thermorheological properties of bitumenwas observed upon varying the size of the SNPs. Slight improvementwas observed when using NH2@SNPs, while the best results were obtained by using C14N@SNPs, showing the crucial role that hydrophobic substituents play in bitumen binders which leads to significant improvements.

Functionalization and modification of bitumen by silica nanoparticles

Caputo P.;Aiello I.;Godbert N.
2020-01-01

Abstract

A study on the effect of silica nanoparticles (SNPs) dispersion in bitumen is herein reported. First, the size of the nanoparticles was finely tuned by controlling the experimental conditions during their synthesis, obtaining spherical SNPs with diameter ranging from 95 up to 900 nm. Subsequently, SNPs were embedded with peripheral amine groups by using APTES (3-aminopropyltriethoxysilane) as functionalized agent (NH2@SNP), and ultimately long alkyl chains were grafted by reacting the free amine with an alkylated aldehyde (C14N@SNP). All SNPs (ca. 1 wt%.) were dispersed in bitumen to probe their effect on the rheological properties of bitumen. No significant change in the thermorheological properties of bitumenwas observed upon varying the size of the SNPs. Slight improvementwas observed when using NH2@SNPs, while the best results were obtained by using C14N@SNPs, showing the crucial role that hydrophobic substituents play in bitumen binders which leads to significant improvements.
2020
Bitumen
Inorganic-organic composite
Silica nanoparticles
Thermorheology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/309022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact