The triangular Shepard method is a fast and accurate scheme for interpolating scattered data. In this paper, we introduce an improvement of the triangular Shepard method for interpolating functional and first order derivatives values at the scattered points. Theoretical and numerical results show that the proposed method reaches at least cubic approximation order. Its fastness, accuracy and simplicity make it usable in real world applications.

Fast and accurate scattered Hermite interpolation by triangular Shepard operators

Dell'Accio F.
;
Di Tommaso F.;
2021

Abstract

The triangular Shepard method is a fast and accurate scheme for interpolating scattered data. In this paper, we introduce an improvement of the triangular Shepard method for interpolating functional and first order derivatives values at the scattered points. Theoretical and numerical results show that the proposed method reaches at least cubic approximation order. Its fastness, accuracy and simplicity make it usable in real world applications.
Hermite interpolation
Scattered data interpolation
Triangular Shepard method
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/309272
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact