Accurate diagnoses of specific diseases require, in general, the review of the whole medical history of a patient. Currently, even though many advances have been made for disease monitoring, domain experts are still requested to perform direct analyses in order to get a precise classification, thus implying significant efforts and costs. In this work we present a framework for automated diagnosis based on high-dimensional gene expression and clinical data. Given that high-dimensional data can be difficult to analyze and computationally expensive to process, we first perform data reduction to transform high-dimensional representations of data into a lower dimensional space, yet keeping them meaningful for our purposes. We used then different data visualization techniques to embed complex pieces of information in 2-D images, that are in turn used to perform diagnosis relying on deep learning approaches. Experimental analyses show that the proposed method achieves good performance, featuring a prediction Recall value between 91% and 99%.

Data reduction and data visualization for automatic diagnosis using gene expression and clinical data

Bruno P.;Calimeri F.;
2020-01-01

Abstract

Accurate diagnoses of specific diseases require, in general, the review of the whole medical history of a patient. Currently, even though many advances have been made for disease monitoring, domain experts are still requested to perform direct analyses in order to get a precise classification, thus implying significant efforts and costs. In this work we present a framework for automated diagnosis based on high-dimensional gene expression and clinical data. Given that high-dimensional data can be difficult to analyze and computationally expensive to process, we first perform data reduction to transform high-dimensional representations of data into a lower dimensional space, yet keeping them meaningful for our purposes. We used then different data visualization techniques to embed complex pieces of information in 2-D images, that are in turn used to perform diagnosis relying on deep learning approaches. Experimental analyses show that the proposed method achieves good performance, featuring a prediction Recall value between 91% and 99%.
Classification
Convolutional neural networks
Gene expression
Heatmap
Hot-spot map
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/309283
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact