For asphalt concrete preparation in laboratory mix-design operations, bitumens are usually mixed with micrometer-sized particles (filler), sand and centimeter-sized crushed stones in a gyratory press at a temperature of about 140–155 ◦C depending on the bitumen viscosity, until adequate homogenization and compaction take place (air voids optimum). This requires energy consumption. To minimize it, the process needs to be optimized and is usually made empirically. The aim of this manuscript is to gain a comprehension of the physico-chemical mechanisms involved in the process by exploring: (i) the rheological properties (viscosity, activation energy) of a neat and RTFOT-aged bitumen, in presence and in absence of a filler, (ii) the volumetric and resistance behavior under the compaction in a standard Gyratory Compactor (GC) of their blends with aggregates and (iii) the mechanical properties (Indirect Tensile Strength, compression and tensile deformation) of the final products. Correlations between activation energy and pre-exponential factor of the viscosity on a side, and between viscosity, workability and final mechanical properties on the other side allowed to provide a rational interpretation of the physico-chemical processes involved in the framework of the physics of complex fluids. The scientific clues will be of help in optimizing the workability in asphalt concretes productions with obvious repercussions in terms of energy savings, useful for economic and environmental issues.

Preparation of Asphalt Concretes by Gyratory Compactor: A Case of Study with Rheological and Mechanical Aspects

Caputo, Paolino
Investigation
;
Vaiana, Rosolino
Conceptualization
;
Gallelli, Vincenzo
Investigation
;
De Filpo, Giovanni
Methodology
;
Oliviero Rossi, Cesare
Supervision
2020

Abstract

For asphalt concrete preparation in laboratory mix-design operations, bitumens are usually mixed with micrometer-sized particles (filler), sand and centimeter-sized crushed stones in a gyratory press at a temperature of about 140–155 ◦C depending on the bitumen viscosity, until adequate homogenization and compaction take place (air voids optimum). This requires energy consumption. To minimize it, the process needs to be optimized and is usually made empirically. The aim of this manuscript is to gain a comprehension of the physico-chemical mechanisms involved in the process by exploring: (i) the rheological properties (viscosity, activation energy) of a neat and RTFOT-aged bitumen, in presence and in absence of a filler, (ii) the volumetric and resistance behavior under the compaction in a standard Gyratory Compactor (GC) of their blends with aggregates and (iii) the mechanical properties (Indirect Tensile Strength, compression and tensile deformation) of the final products. Correlations between activation energy and pre-exponential factor of the viscosity on a side, and between viscosity, workability and final mechanical properties on the other side allowed to provide a rational interpretation of the physico-chemical processes involved in the framework of the physics of complex fluids. The scientific clues will be of help in optimizing the workability in asphalt concretes productions with obvious repercussions in terms of energy savings, useful for economic and environmental issues.
bitumen; filler; asphalt concretes; Arrhenius; viscosity; workability; gyratory press
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11770/310362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact