A significant correlation between the in-plane (IP) and out-of-plane (OOP) damage propagation of masonry infills (MIs) is frequently observed after strong earthquakes, posing a serious problem as regards vulnerability of public buildings such as schools. The present work is aimed at identifying the effects of different IP and OOP modelling assumptions of MIs on their seismic damage. To this end, the state secondary school De Gasperi-Battaglia in Norcia (Italy), object of monitoring by the Department of Civil Protection since 2000, is investigated for the heterogeneity of infill typologies. The school is composed of a basement and three storeys above ground level, with a reinforced concrete (r.c.) framed structure having a long-shaped rectangular plan. Two typologies can be identified in terms of transverse layout of MIs: (i) double-leaf interior partitions, made of hollow clay bricks; (ii) double-leaf exterior infill walls, constituted by facade solid bricks paired with hollow clay bricks. In addition, partial height infills in the longitudinal direction, due to classroom windows, make the columns susceptible to short column effects. MIs are represented by a five-element macro-model predicting both in-plane (IP) and out-of-plane (OOP) behaviour through a horizontal nonlinear truss and four diagonal nonlinear beam elements, respectively. Stiffness and strength values in the OOP direction are also reduced considering the evolution of the IP damage. Three assumptions are investigated for the behaviour of structural MIs: i.e. elastic both IP and OOP; inelastic IP and elastic OOP; inelastic both IP and OOP. Bare and infilled test structures are subjected to biaxial spectrum-compatible accelerograms, to evaluate the IP and OOP damage levels and effectiveness of the OOP simplified verification proposed by seismic codes.
In-plane and out-of-plane seismic damage of masonry infills in existing r.c. structures: the case study of De Gasperi-Battaglia school in Norcia
Mazza F.
;Donnici A.
2020-01-01
Abstract
A significant correlation between the in-plane (IP) and out-of-plane (OOP) damage propagation of masonry infills (MIs) is frequently observed after strong earthquakes, posing a serious problem as regards vulnerability of public buildings such as schools. The present work is aimed at identifying the effects of different IP and OOP modelling assumptions of MIs on their seismic damage. To this end, the state secondary school De Gasperi-Battaglia in Norcia (Italy), object of monitoring by the Department of Civil Protection since 2000, is investigated for the heterogeneity of infill typologies. The school is composed of a basement and three storeys above ground level, with a reinforced concrete (r.c.) framed structure having a long-shaped rectangular plan. Two typologies can be identified in terms of transverse layout of MIs: (i) double-leaf interior partitions, made of hollow clay bricks; (ii) double-leaf exterior infill walls, constituted by facade solid bricks paired with hollow clay bricks. In addition, partial height infills in the longitudinal direction, due to classroom windows, make the columns susceptible to short column effects. MIs are represented by a five-element macro-model predicting both in-plane (IP) and out-of-plane (OOP) behaviour through a horizontal nonlinear truss and four diagonal nonlinear beam elements, respectively. Stiffness and strength values in the OOP direction are also reduced considering the evolution of the IP damage. Three assumptions are investigated for the behaviour of structural MIs: i.e. elastic both IP and OOP; inelastic IP and elastic OOP; inelastic both IP and OOP. Bare and infilled test structures are subjected to biaxial spectrum-compatible accelerograms, to evaluate the IP and OOP damage levels and effectiveness of the OOP simplified verification proposed by seismic codes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.