Deformation mechanisms of the slopes are commonly schematized in four different stages: pre-failure, failure, post-failure and eventual reactivation. Traditional numerical methods, such as the finite element method and the finite difference method, are commonly employed to analyse the slope response in the pre-failure and failure stages under the assumption of small deformations. On the other hand, these methods are generally unsuitable for simulating the post-failure behaviour due to the occurrence of large deformations that often characterize this stage. The material point method (MPM) is one of the available numerical techniques capable of overcoming this limitation. In this paper, MPM is employed to analyse the post-failure stage of a landslide that occurred at Cook Lake (Wyoming, USA) in 1997, after a long rainy period. Accuracy of the method is assessed by comparing the final geometry of the displaced material detected just after the event, to that provided by the numerical simulation. A satisfactory agreement is obtained between prediction and observation when an increase in the groundwater level due to rainfall is accounted for in the analysis.

Run-Out Simulation of a Landslide Triggered by an Increase in the Groundwater Level Using the Material Point Method

Troncone A.
;
Pugliese L.;Conte E.
2020-01-01

Abstract

Deformation mechanisms of the slopes are commonly schematized in four different stages: pre-failure, failure, post-failure and eventual reactivation. Traditional numerical methods, such as the finite element method and the finite difference method, are commonly employed to analyse the slope response in the pre-failure and failure stages under the assumption of small deformations. On the other hand, these methods are generally unsuitable for simulating the post-failure behaviour due to the occurrence of large deformations that often characterize this stage. The material point method (MPM) is one of the available numerical techniques capable of overcoming this limitation. In this paper, MPM is employed to analyse the post-failure stage of a landslide that occurred at Cook Lake (Wyoming, USA) in 1997, after a long rainy period. Accuracy of the method is assessed by comparing the final geometry of the displaced material detected just after the event, to that provided by the numerical simulation. A satisfactory agreement is obtained between prediction and observation when an increase in the groundwater level due to rainfall is accounted for in the analysis.
2020
Groundwater
Landslides
Material point method
Post-failure stage
Run-out simulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/310683
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact