In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP) with a thin layer of ethylene-chlorotrifluoroethylene copolymer (ECTFE). The employment of N-methyl pyrrolidone (NMP) as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C). Scanning electron microscopy (SEM) analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size). ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.
Development of novel ECTFE coated PP composite hollow-fiber membranes
Santoro S.;
2016-01-01
Abstract
In this work composite hollow-fibers were prepared by dip-coating of commercial polypropylene (PP) with a thin layer of ethylene-chlorotrifluoroethylene copolymer (ECTFE). The employment of N-methyl pyrrolidone (NMP) as solvent improved the polymer processability favoring dip-coating at lower temperature (135 °C). Scanning electron microscopy (SEM) analyses showed that after dip-coating the PP support maintained its microstructure, whereas a thin coated layer of ECTFE on the external surface of the PP hollow-fiber was clearly distinguishable. Membrane characterization evidenced the effects of the concentration of ECTFE in the dope-solution and the time of dip-coating on the thickness of ECTFE layer and membrane properties (i.e., contact angle and pore size). ECTFE coating decreased the surface roughness reducing, as a consequence, the hydrophobicity of the membrane. Moreover, increasing the ECTFE concentration and dip-coating time enabled the preparation of a thicker layer of ECTFE with low and narrow pore size that negatively affected the water transport. On the basis of the superior chemical resistance of ECTFE, ECTFE/PP composite hollow fibers could be considered as very promising candidates to be employed in membrane processes involving harsh conditions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.