Layered metal/dielectric hyperbolic metamaterials (HMMs) support a wide landscape of plasmon polariton excitations. In addition to surface plasmon polaritons, coupled Bloch-like gap-plasmon polaritons with high modal confinement inside the multilayer are supported. Photons can excite only a subset of these polaritonic modes, typically with a limited energy and momentum range in respect to the wide set of high-K modes supported by hyperbolic dispersion media, and coupling with gratings or local excitation is necessary. Strikingly, electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope allows nm-scale local excitation and mapping of the spatial field distribution of all the modes supported by a photonic or plasmonic structure, both bright and dark, and also all other inelastic interactions of the beam, including phonons and interband transitions. Herein, experimental evidence of the spatial distribution of plasmon polaritons in multilayered type II HMM nanostructures is acquired with an aloof electron beam adjacent to structures of current interest. HMM pillars are useful for their separation and adjustability of optical scattering and absorption, while HMM slot cavities can be used as waveguides with high field confinement. The nature of the modes is confirmed with corresponding simulations of EEL and optical spectra and near-field intensities.

Electron Energy Loss Spectroscopy of Bright and Dark Modes in Hyperbolic Metamaterial Nanostructures

Strangi G.
;
2020-01-01

Abstract

Layered metal/dielectric hyperbolic metamaterials (HMMs) support a wide landscape of plasmon polariton excitations. In addition to surface plasmon polaritons, coupled Bloch-like gap-plasmon polaritons with high modal confinement inside the multilayer are supported. Photons can excite only a subset of these polaritonic modes, typically with a limited energy and momentum range in respect to the wide set of high-K modes supported by hyperbolic dispersion media, and coupling with gratings or local excitation is necessary. Strikingly, electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope allows nm-scale local excitation and mapping of the spatial field distribution of all the modes supported by a photonic or plasmonic structure, both bright and dark, and also all other inelastic interactions of the beam, including phonons and interband transitions. Herein, experimental evidence of the spatial distribution of plasmon polaritons in multilayered type II HMM nanostructures is acquired with an aloof electron beam adjacent to structures of current interest. HMM pillars are useful for their separation and adjustability of optical scattering and absorption, while HMM slot cavities can be used as waveguides with high field confinement. The nature of the modes is confirmed with corresponding simulations of EEL and optical spectra and near-field intensities.
2020
electron energy loss spectroscopy
hyperbolic metamaterials
nanoparticles
plasmons
scanning transmission electron microscopy
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/311723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact