We present a mathematical derivation of a discrete dynamical system by following a Fourier-Galerkin approximation of the 3-D incompressible magnetohydrodynamic (MHD) equations. In this way, a 6-D map, depending on 12 bifurcation parameters, is derived as a truncated set of nonlinear ordinary dierential equations (ODEs) to characterize incompressible plasma dynamical behaviors, also conserving total energy and cross-helicity in the ideal MHD approximation. Moreover, three dierent subspaces, associated with long-living non-trivial solutions (e.g., xed point solutions), have been found like the uid, magnetic, and the Alfvenic xed points. Our set can be seen as a Lorenz-like model to investigate MHD phenomena.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | The poor man's magnetohydrodynamic (PMMHD) equations |
Autori: | CARBONE, Vincenzo [Membro del Collaboration Group] |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11770/312048 |
Appare nelle tipologie: | 1.1 Articolo in rivista |