In this article, we propose and experimentally assess DiSE-growth, which is a tree-based (pattern-growth) algorithm for mining DIverse Social Entities. Our algorithm makes use of a specialized data structure, called DiSE-tree, for effectively and efficiently representing relevant information on diverse social entities while successfully supporting the mining phase. Diverse entities are popular in a wide spectrum of application scenarios, ranging from linked Web data to Semantic Web and social networks. In all these real-life application scenarios, it has become important to analyze high volumes of valuable linked data and discover those diverse social entities spanning over multiple domains in the entire social network (or some social network analyst-focused portions of the network). Moreover, we also extend our algorithm to handle cases where the analysts interactively change their social network mining parameters (e.g., incrementally expanding or narrowing the analyst-focused portions of social networks in which social network mining is conducted). Furthermore, we complement our analytical contributions by means of an empirical evaluation that clearly shows the benefits of our interactive tree-based mining of diverse social entities.

Interactive mining of diverse social entities

Cuzzocrea Alfredo;
2016-01-01

Abstract

In this article, we propose and experimentally assess DiSE-growth, which is a tree-based (pattern-growth) algorithm for mining DIverse Social Entities. Our algorithm makes use of a specialized data structure, called DiSE-tree, for effectively and efficiently representing relevant information on diverse social entities while successfully supporting the mining phase. Diverse entities are popular in a wide spectrum of application scenarios, ranging from linked Web data to Semantic Web and social networks. In all these real-life application scenarios, it has become important to analyze high volumes of valuable linked data and discover those diverse social entities spanning over multiple domains in the entire social network (or some social network analyst-focused portions of the network). Moreover, we also extend our algorithm to handle cases where the analysts interactively change their social network mining parameters (e.g., incrementally expanding or narrowing the analyst-focused portions of social networks in which social network mining is conducted). Furthermore, we complement our analytical contributions by means of an empirical evaluation that clearly shows the benefits of our interactive tree-based mining of diverse social entities.
2016
Data mining
diverse friends
friendship patterns
incremental mining
intelligent information and engineering systems
interactive mining
knowledge based and expert systems
social computing systems
social network analysis
Control and Systems Engineering
Software
Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11770/312507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact